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�� Introduction and the main result

In the late ���s or the beginning of the ���s� Eliashberg proved
the following theorem� which �rst indicated the existence of symplec�
tic topology that is supposed to be �ner than di�erential topology�

C��rigidity theorem �Eliashberg�� The group Symp��P 	 of sym�
plectic di�eomorphisms on a symplectic manifold �P�w	 is C��closed in
Di� �P 	�

Eliashberg�s original proof 
�� relies on a structure theorem on the
combinatorial structure of the wave front set of certain Legendrian
submanifolds in the one�jet bundle� The complete detail of the proof
of this structure theorem� however� has not been published in the lit�
erature� The heart of his proof is some kind of non�squeezing theorem�
which he proved using the above structure theorem� In a seminal pa�
per 
�� in ����� Gromov introduced the elliptic techniques of pseudo�
holomorphic curves and proved� among many other things� the following
non�squeezing theorem�

Non�squeezing theorem �Gromov�� Let B�n�R	 � C n be the
standard R�ball in C n and w� be the canonical symplectic structure on
C n � Then there is a symplectic embedding

� � �B�n�R	� w�	� �Z�n�r	� w�	
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i� R � r� Here Z�n�r	 � B��r	� C
n�� � C

n �

This non�squeezing theorem is the beginning of the so called symplec�
tic capacity theory and in fact� the existence of any symplectic capacity
function on the set of open sets in C

n will provide a relatively straight�
forward proof of the C��rigidity theorem using Eliashberg�s argument in
Section ��� 
��� Shortly after Gromov�s work 
��� Ekeland and Hofer

��� 
�� used the variational method of the existence theory of periodic
orbits of Hamiltonian systems on C n to construct other symplectic ca�
pacities� �We refer to 
�� for a detailed exposition on the symplectic
capacity theory�	 This variational theory was culminated by Hofer 
��
into the so called Hofer�s geometry on the group Dc

��P 	 of Hamiltonian
di�eomorphisms� The above C��rigidity is encoded into a remarkable bi�
invariant �Finsler	 distance on the group� In 
��� Lalonde and McDu�
set the stage of Hofer�s geometry on any symplectic manifold �P�w	
by proving that Hofer�s pseudo�norm on Dc

w�P 	 is nondegenerate on
any �P�w	� Unlikely from Hofer�s proof on C n � Lalonde and McDu�
used the Gromov theory of pseudo�holomorphic curves together with
an ingenious method of constructing optimal symplectic embedding of
balls� They also made more detailed investigation of Hofer�s geometry
on �P� �	 in 
�� e�g� concerning the geodesics on the geometry�

On the other side of symplectic geometry� Arnold 
� in the �����s�
�rst predicted the existence of Lagrangian intersection theory �on the
cotangent bundle	 as the intersection theoretic version of the Morse
theory and posed the celebrated Arnold�s conjecture� We would like
to recall that the intersection theoretic version of the degree theory of
generic vector �elds is the Lefschetz intersection theory� �We refer to
our survey paper 
�� for more explanations on this aspect�	

Arnold�s conjecture �on T �M�� Let M be a compact n�manifold
and

L� � ��oM 	� L� � oM �

where oM � T �M is the zero section� and � is a Hamiltonian di�eo�
morphism� Then

��L� � L�	 � CRN�M	 for the transverse case

� CR�M	 in general�
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where

CR�M	 �� inf
f

�fCrit�f	 j f � C��M	g�

CRN�M	 �� inf
f

�fCrit�f	 j f � C��M	 is Morseg�

Because of the lack of understanding of the invariants CRN�M	
or CR�M	� this conjecture is widely open� However� its cohomologi�
cal version was proven by Hofer 
�� using the direct approach of the
classical variational theory of the action functional which was inspired
by Conley�Zehnder�s earlier proof 
�� of the �cohomological version	
of Arnold�s conjecture on the number of �xed points of Hamiltonian
di�eomorphisms� Although the basic idea in 
�� is simple in the pres�
ence of 
��� carrying out all the details of the direct approach involves
many tedious computations partly due to the lack of global coordinates
on T �M �except the case where M � T n for which Chaperon 
� had
earlier proved Hofer�s result on T n using the idea of broken geodesics	�
Shortly after� a much simpler proof using a �nite dimensional reduction
of the action functional with the idea of broken geodesics was given by
Laudenbach and Sikorav 
��� This approach has been further devel�
oped by Sikorav 
�� and then culminated into the Viterbo�s theory of
generating functions 
��� This �nite dimensional approach completely
eliminates the in�nite dimensional analysis �both the elliptic theory and
the variational theory	 but instead uses a rather sophisticated topolog�
ical machinery and geometric constructions� However� this approach
still captures the C��rigidity theory and most of the proofs involved
are rather straightforward as Viterbo himself put it in 
��� The way
how Viterbo used generating functions in the applications to symplectic
topology is through the construction of certain symplectic invariants of
Lagrangian submanifolds by the ��nite dimensional	 critical point the�
ory of generating functions� which up to normalization� depends only on
the Lagrangian submanifold that is generated by the generating func�
tion used� but not on the individual generating function� The relation of
these invariants to the �Hofer�s	 geometry �on the space	 of Lagrangian
submanifolds becomes obscure �or at least not apparent	 during this
process�

One of the main goals of the present paper is to introduce the Floer
theory of Lagrangian intersections as the major tool in the symplectic
topology and to attempt to incorporate di�erent approaches to sym�
plectic topology mentioned above in one framework �Eliashberg�s wave
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front theory� Hofer�s geometry and Viterbo�s techniques of generating
functions	 and to lay the foundation not only to serious applications of
the Floer theory and but also to the future development in the symplec�
tic topology� Recall that Floer introduced in 
�� the Floer homology
to study the Lagrangian intersection theory� more precisely the Arnold
conjecture of Lagrangian submanifolds L � P with ���P�L	 � feg� For
example� Hofer�s theorem mentioned above is a special case of Floer�s

��� 
�� �at least up to the orientation problem which we now solve in
the present paper	� if we set L� � ��oM 	� L� � oM in the cotangent
bundle� One crucial new point in our Floer theory in the present paper
is a careful study of the �ltration present in the Floer homology� This
point was previously used by Floer and Hofer 
�� in their symplectic
homology theory but it is the �rst time to be carefully studied for the
case of Lagrangian submanifolds� We will show that this relative case
involves many new interesting geometric and algebraic constructions�

Floer 
�� de�ned the Floer homology by considering the Cauchy�
Riemann equation for the maps u � R � 
�� � � T �M �we will concern
only the cotangent bundle in this paper	�

����	

�����
�u
�� � J �u

�t � ��

u��� �	 � L� � ��oM 	�

u��� �	 � L� � oM �

which becomes the equation of a L��type gradient �ow of some real
valued functional �a variation of the classical action functional	� when
it exists� on the space of paths

��L�� L�	 � f� � 
�� � � T �M j ���	 � L�� ���	 � L�g�

�See Section ��� for its precise de�nition in the cases we study in this
paper�	 We call this functional Floer�s �action� functional and denote
it by a� This is de�ned up to addition of constant� The critical points of
a correspond to the intersections of L� and L�� We call this version of
the Floer theory for the Lagrangian intersection the geometric version�

On the other hand� when the Hamiltonian H generating � �or L�� is
given �i�e�� L� � ��H�oM 	� L� � oM 	� the intersections of L� � ��H�oM 	
and L� � oM have one to one correspondence with the solutions of
Hamilton�s equation

����	

�
�z � XH�z	�

z��	 � oM � z��	 � oM �
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which are nothing but the critical points of the classical action functional

AH��	 �

Z
��� �

Z �

�
H���t	� t	dt

on the space of paths

��M	 � f� � 
�� � � T �M j ���	� ���	 � oMg�

Here we denote by � the canonical one�form on T �M � Just like for the
Floer�s functional� one can study the intersection problem of ��H�oM 	
and oM by considering the L��type gradient �ow of AH on ��M	 �see
Section ��� for the precise set�up	� whose equation becomes

����	

�
�u
�� � J

�
�u
�t �XH�u	

�
� ��

u��� �	 � oM � u��� �	 � oM �

We call this version of the Floer theory the dynamical version�
One can easily transform ����	 into the form of ����	 through the

map

u �� ��H��tH	��u �� eu�����	

J �� ��tH���H	��	�J � JH �

The advantage of ����	 against ����	 is that ����	 involves only L� and
L� not the di�eomorphism ��H � and hence the geometry of the solutions
will depend only on L� and L�� although this time the almost complex
structure apparently depends on H� Here we use the important fact
that the space of compatible almost complex structures is symplectically
invariant and contractible� The importance of this fact has been used
often in symplectic geometry starting from 
��� but not as extensively
as in this paper� One important philosophy of ours is to transform the
di�cult problem of isotoping Lagrangian submanifolds into the trivial
problem of isotoping compatible almost complex structures� which en�
ables us to easily get around� in our approach� the nontrivial question
of the uniqueness problem in Viterbo�s approach of generating functions�
On the other hand� AH has a natural connection to both Hofer�s geom�
etry and to generating functions� This is because the classical action
functional AH on the space of paths free at the �nal time

� � f� � 
�� � � T �M j ���	 � oMg
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is a canonical generating function in terms of the �bration

��M � p��	 �� �����		�

One crucial observation of ours is that although the Floer theory of AH

on the whole space � cannot be done due to some analytical obstruction�
it can be done nicely on the subset

��S	 � f� � 
�� � � T �M j ���	 � oM � ���	 � N�Sg � �

for any �compact	 submanifold S � M � The critical points of AH j��S�
is the set of solutions of

����	

�
�z � XH�z	

z��	 � oM � z��	 � N�S�

The gradient �ow of the restricted functional AH

��
��S�

with respect to

a suitable metric on ��S	 becomes

����	

�������
�u
�� � J

�
�u
�t �XH�u	

�
� ��

u��� �	 � oM �

u��� �	 � N�S � the conormal bundle of S�

which is an elliptic boundary value problem of the �perturbed	 Cauchy�
Riemann equation� ����	 is a special case of ����	 where S � M � Fol�
lowing Floer�s standard construction� we now form the set

CF �H�S	 � the set of solutions of ����	

and study the moduli space MJ�H�S	 of solutions of ����	� There are
two advantages of our dynamical version of the relative Floer theory
�i�e�� Floer theory for Lagrangian intersections	 against the more stan�
dard geometric version as in 
�� or 
��� First� there exists a canonical
Z�grading on CF �H�S	 that is provided by the Maslov index canoni�
cally assigned to the solutions of ����	 �see Theorem ��� for the precise
statement	� Secondly� MJ �H�S	 carries coherent orientations �see The�
orem ���	� which enables us to de�ne the relative Floer homology with
arbitrary coe�cients� We would like to emphasize that for the standard
geometric version as in 
��� there is no canonical grading �see 
�� the
de�nition of a non�canonical grading	� Furthermore� in the general rel�
ative Floer theory as in 
�� or 
�� unlikely from the non�relative Floer
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theory �i�e�� the Floer theory for the Hamiltonian di�eomorphisms	 as
in 
�� and 
��� each Floer cell itself MJ�z

�� z�	 is not necessarily ori�
entable� let alone talking about the existence of coherent orientations�
This has forced us to look at the relative Floer theory only with Z��
coe�cients so far� Our solutions of both the canonical grading and the
orientability of the Floer cells MJ�z

�� z�	 soly depend on the special
circumstance in the framework of the dynamical version where we are
looking at the �xed Lagrangian submanifolds� the co�normal bundles
in the cotangent bundle with a given Hamiltonian generating the La�
grangian submanifold L � �H�oM 	�

Theorem I� Let us choose any generic choice of �H�S� J	 inside
its isotopy class 
H�S� J  	� 
S�

��	 There exists a canonical Z�grading on CF �H�S � M	� Denote
by CF��H�S � M	 the Z�graded module �with arbitrary coe�cients� gen�
erated by CF �H�S � M	�

��	 MJ�H�S	 carries a coherent orientation� denoted by � that is
compatible to the gluing procedure in the sense of 	

�� 	
��� and so there
exists a boundary map

	�H�J� � 	��H�J� � CF��H�S � M	� CF��H�S � M	�

that has degree � and hence� we can de�ne the Floer homology

HF��H�S� J � M	 � HF �
� �H�S� J � M	

with arbitrary coe�cients for such �H�S� J	� We denote the set of co�
herent orientations by Or�
H�S� J 	 �� Or�
S � M	� whose precise def�
inition we will refer to Section � below and to 	

�� As the notation
suggests� this set depends only on the isotopy class 
H�S� J  	� 
S�

��	 For each �xed coherent orientation � and for each generic pair
�H�� S�� J�	� �H�� S� � J�	 isotopic to each other� there exists a canon�
ical isomorphism

h��� � HF �
� �H

�� S�� J� � M	� HF �
� �H

�� S� � J� � M	�

that preserves the canonical grading�
��	 Furthermore� there exists a coherent orientation �� which we

call the canonical coherent orientation and with respect to which there
exists a canonical isomorphism

F�H�S�J� � H��S�Z	� HF �
� �H�S� J � M	�
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which in particular shows that HF��H�S� J � M	 is non�trivial�

We will always suppress the canonical coherent orientation � pro�
vided in ��	 from notation throughout the paper except when we need
to emphasize the dependence on the coherent orientation�

Using the fact that ����	 is the gradient �ow of AH

��
��S�

with respect

to a L��type metric on ��S	 �depending on J	� we can also study the
�ltration� and de�ne the relative homology groups

HF
�a�b�
� �H�S� J � M	 for b 
 a�

Furthermore� we show �Theorem ���	 that for �xed �H�S	� there exists
a canonical isomorphism

HF
�a�b�
� �H�S� J� � M	� HF

�a�b�
� �H�S� J� � M	

for two generic J� and J� � Using these� one can de�ne a number

��H�S� J	 � inf
�
f� jHF

������
� �H�S� J�M	

� HF��H�S� J � M	 is surjectiveg�

and prove that ��H�S� J	 is independent of J � We denote the common
number by ��H�S	�

Theorem II� ��	 ��H�S	 is a ��nite� critical value of AH

��
��S�

and

continuous functions of S with respect to the C��topology of embeddings�

��	 If ��H��oM 	 � ��
H� �oM 	� then

��H�� S	� ��H� � S	 � c�H��H�	�

where c�H��H�	 does not depend on the choice of S �M �

��	 When H 
 �� ��H�S	 � � for all S �M �

��	 We haveZ �

�
�max

x
�H��H�	dt � ��H� � S	���H�� S	 �

Z �

�
�min

x
�H��H�	dt�

In particular� Z �

�
�max

x
Hdt � ��H�S	 �

Z �

�
�min

x
Hdt�
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��	 j��H� � S	���H�� S	j � kH��H�kC� which in particular implies
that for each S � M � the function H �� ��H�S	 is continuous with
respect to the topology induced by the C��norm of H�

Two special cases are worthwhile to mention here� When S � fptg�
we de�ne a function� for each q �M �

fH�q	 �� ��H� fqg	�

which becomes a continuous function on M and which we call the basic
phase function of H �or L � ��H�oM 		� This function has the following
remarkable property�

Theorem III� ��	 The basic phase function fH depends only on
L � ��H�oM 	 �up to addition of constant� and is smooth away from a
set of co�dimension at least one and satis�es

����	 osc�fH	 �� max fH �min fH � kHk�

where kHk is the Hofer�s norm�
��	 At smooth points of q� it satis�es

�q� dfH�q		 � L � ��H�oM 	�

In other words� the graph GfH � M � R of fH is a subset of the wave
front set of L �independent of H��

The existence of such a graph part in the wave front set of L was �rst
observed by Sikorav in the theory of generating functions� One novelty
of Theorem III is the canonical choice of such a graph� We note that in
general there may be more than one graph parts in the wave front� The
graph part given in Theorem III carries in its de�nition some geometric
information which is to be carefully studied in the future�

If we de�ne the Hofer�s distance between Lagrangian submanifolds
�Hamiltonian isotopic to each other	 by

����	 d�L�� L�	 � inf
H	�H�L��
L�

kHk�

����	 implies� by taking in�mum over H �� L�

osc�fL	 �� osc�fH	 � d�L� oM 	�

Combining Theorem III ��	� ����	 and the fact that only the zero sec�
tion contains the graph of a constant function in its wave front� we
immediately prove
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Corollary� The distance ���� is nondegenerate� i�e�� d�L�� L�	 � �
if and only if L� � L��

After we announced the proof of this corollary� Eliashberg and Siko�
rav 
�� told us that they had known that this nondegeneracy can also
be proven by the techniques of generating functions but the proof is not
as straightforward as or conceptually as simple as ours �In fact� the com�
plete proof has not been written in the literature	� One can pose the
same nondegeneracy question on Lagrangian submanifolds on general
�P�w	� This general question� which was the motivation that initiated
our research in this paper� is still open�� We would like to compare
this question with that of the symplectic displacement �or disjunction	
energy of Lagrangian submanifolds �see 
�� or 
�	�

In a sequel 
�� to this paper� we study the case in which S � M
in a detailed way and construct some cohomological invariants that are
closely tied to the pants product in Floer cohomology and the group
operation on the space of Hamiltonians H � P � 
�� � � R�

H�K�x� t	 � H�x� t	 �K���tH	���x	� t	�

In this case� N�S � oM and so it reduces to the situation of ����	
but contains many more interesting geometric and algebraic structures�
which we refer to 
���

Many of the previous and recent works on the Floer homology �mostly
for the study of Hamiltonian di�eomorphisms not for the Lagrangian
intersections� though	 has provided to us much insight� and analytical
and geometrical background for the present work� We would like to cite
here the references that in�uenced us most in writing this paper� First�
the paper 
�� by Viterbo on the generating function approach has con�
stantly provided the direction of our research� in which 
�� has helped
to formulate the de�nition of our invariants using the Floer theory� The
paper 
�� by the present author and 
� by Chekanov provided the �rst
applications of the relative Floer theory to the problems of symplec�
tic topology beyond the Arnold conjecture� which has encouraged us
to look for more applications� which in turn has led to the research in
this paper� Next� 
��� 
�� and 
� taught us the Morse�Witten theory
framework on the cup product in the classical homology theory� 
��

�Note added in proof
Chekanov recently proved the nondegeneracy for arbitrary compact Lagrangian sub�
manifolds in tame symplectic manifolds in a preprint entitled �Hofer�s symplectic
energy and invariant metrics on the space of Lagrangian embeddings�	
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and 
� explained well its quantized picture� the pants product in the
nonrelative Floer theory in a rigorous way� 
��� 
�� also described the
similar picture in the relative context� We learned from the paper 
�
by Chekanov an important calculation involving the action functional�
from which many of the calculations we do in this paper were inspired�
The papers 
��� 
�� contain an elegant exposition on the Maslov index�
which has been useful in our solving both the grading and orientation
problems� Finally� our joint paper 
�� with Fukaya has provided a cru�
cial analytical step in 
�� in relation to the pants product� Of course�
without Floer�s pioneering works 
�� � 
��� the present work would not
have been possible�

We would like to thank D� Milinkovic for having many fruitful discus�
sions during the preparation of this paper and Y� Eliashberg for sharing
his insight on the uniqueness theorem for generating functions� This
research is supported in part by an NSF grant and a UW Graduate Re�
search Award grant� The results of the present paper were announced
and outlined in our survey paper 
��� Section � in the Newton proceed�
ings for the program of Symplectic Topology in �����

Notation�

��	 H�K�x� t	 � H�x� t	 �K���tH	���x	� t	�

��	 H�x� t	 � �H��tH�x	� t	�

��	 eH�x� t	 � �H�x� �� t	�

��	 Hac�P 	 � the set of asymptotically constant Hamiltonians on P �

��	 Dac
� �P 	 � the set of Hamiltonian di�eomorphisms generated by

Hac�

��	 �H � the time�one map of the equation �z � XH�z	�

��	 H �� � if and only if � � �H �

��	 oM � the zero section of T �M �

��	 H �� L if and only if L � �H�oM 	�

���	 zpH � 
�� � � T �M � zpH�t	 � �tH����H	���p		�

���	 � � fz � 
�� � � T �M j z��	 � oMg�
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���	 N�S � the conormal bundle of S�

���	 ��S	 � fz � � j z��	 � N�Sg�

���	 ��M	 � fz � 
�� � � T �M j z��	� z��	 � oMg�

Conventions�

��	 The Hamiltonian vector �eld XH is de�ned by XHc� � dH�

��	 An almost complex structure is called compatible to � if the bilin�
ear form h � i � ���� J �	 de�nes a Riemannian metric�

�� Preliminaries

In this section� we give brief descriptions of the various aspects of
symplectic topology that are relevant to the results we prove in the
present paper�

���� Hofer�s geometry�

On a symplectic manifold �P� �	� we denote by Dc
��P 	 the set of

Hamiltonian di�eomorphisms which is the collection of time�one maps
��H of the Hamiltonian equation

�z � XH�z	�

where H � P � 
�� � � R is the smooth function with compact sup�
port� We denote �H � ��H and by Hc the set of such �time dependent	
Hamiltonians and denote by

����	 H �� �

if � � ��H � and say that H generates � or � is generated by H� As
it will be clear in the later sections� it seems to be more natural to
allow such Hamiltonians that are constant outside a compact set of
P � When the manifold P has many �ends�� one may even allow the
Hamiltonian to have di�erent constants on di�erent ends� We call such
H�s asymptotically constant Hamiltonians� Although it is not essential
to use this larger class of Hamiltonians in this paper� it seems most
natural to look at when one studies compact symplectic manifolds with
more than one boundary components or non�compact manifold with
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more than one ends� Because of this and some normalization that we will
adapt in this paper� we use the asymptotically constant Hamiltonians
instead of compactly supported ones�

We denote

Hac�P 	 � fH � P � 
�� � � R j H is asymptotically constantg�

For each H � Hac� we de�ne the support of H as the intersection of
the complements of open sets where H is constant and denote it by
Supp H� Unlikely from Hc�P 	� Hac�P 	 is invariant under the addi�
tion of constants� Since the Hamiltonian vector �eld associated to any
Hamiltonian H � Hac�P 	 still has compact support� its �ow will be
well�de�ned and so we can consider the time one map �H �� ��H for
each H � Hac�P 	� We denote

Dac
� �P 	 � f�H � Symp��P 	 j H � Hac�P 	g�

We would like to note that if P has only one end� then the two sets
Dac
� �P 	 and Dc

��P 	 coincide but are di�erent in general� Just as in
the case of Dc

��P 	� it is easy to check that Dac
� �P 	 is indeed a normal

subgroup of Symp��P 	 which is nicely encoded by the following corre�
spondences� When H �� � and K �� � we have

� Ht�x	 � �H��tH�x	� t	 �� ��tH	�������	

� H�K�x� t	 �� H�x� t	 �K���tH	���x	� t	 �� �tH  �
t
K �����	

� H���x	� t	 �� ���  �tH  �����	

for any symplecticdi�eomorphism�

It is easy to see that the operation � provides a group structure on
Hac�P 	 or Hc�P 	 with respect to which the zero function plays the role
of the identity and H is the inverse of H� Recall that the Lie algebra of
the group Dc

��P 	 is the set of compactly supported �time independent	
Hamiltonian h�s i�e�� C�c �P 	� The Lie algebra of Dac

� �P 	 is the set of
�time independent	 Hamiltonian h�s that are asymptotically constant
and whose asymptotic values cj �s on the ends satisfy

����	 c� � c� � � � �� c	 � ��

where � is the number of the ends of P � We denote by C�b �P 	 the
set of such functions on P � Here the subscript b stands for the word
�balanced�� We denote the total oscillation of h � C�b �P 	 by

����	 osc�h	 �� max
x�P

h�x	�min
x�P

h�x	�
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Note that osc � C�b �P 	� R
� is invariant under the pull�back operation

by di�eomorphisms on P � Now� Hofer�s norm of H � Hac is de�ned to
be

kHk ��

Z �

�
osc�Ht	dt �

Z �

�
maxHt �minHtdt

�

Z �

�
osc�Ht  �

t
H	dt�

����	

which is just the length of the path t �� �tH measured by the right�
invariant Finsler structure on Dac

w �P 	 given by ����	 at � � id� Then
we de�ne the group norm k�k� which corresponds to the distance from
the identity to � in terms of the Finsler structure by

����	 k�k � inf
H ���

kHk

for � � Dac
� �P 	� Using ����	 ����	� it is easy to check that k�k satis�es

the identities�

��	 kidk � ��

��	 k���k � k���k�

��	 k�k � k�k� kk�

��	 k���  �  �k � k�k for any symplectic di�eomorphism ��

Therefore� we have a bi�invariant �pseudo	�distance� the so called
Hofer�s distance on Dac

� �P 	 de�ned by

����	 d��� 	 � k���k�

It is a highly nontrivial fact to prove that this pseudo�distance on Dc
��P 	

is indeed a distance or equivalently that the �pseudo	�norm in ����	 is
nondegenerate� The same applies to Dac

� �P 	� In fact� Lalonde�McDu�

�� proves that this fact is equivalent to the non�squeezing theorem on
B��r	� P �

Theorem ��� �Hofer �R�n		 Lalonde�McDu
 �in general���
The norm de�ned as in �
��� is non�degenerate� i�e�� k�k � � if and
only if � � id�
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Hofer�s proof 
�� uses a variational theory of the action functional

AH��	 �

Z


pdq �

Z
H���t	� t	dt

on the Sobolev space H����S�� C n	� while Lalonde�McDu� 
�� showed
that this theorem is a consequence of a general non�squeezing theorem�
through an ingenious way of constructing optimal embedding of balls�
�For any symplectic manifold �P �n� w	� the standard ball B��n����R	 �
C
n�� can be symplectically embedded into �B��r	�P�w��w	 only if R �

r�� After then� they used the theory of pseudo�holomorphic curves to
prove the non�squeezing theorem� together with an ingenious �wrapping
construction� of symplectic balls they call�

We now develop the analogue of the Hofer�s geometry on the space
of Lagrangian submanifolds� As in the case of di�eomorphisms� we
take the point of view of Finsler geometry� Let L� be a �xed compact
Lagrangian submanifold in �P�w	 and denote by !��L� � P 	 the set
of Lagrangian submanifolds Hamiltonian isotopic to L�� The tangent
space of !��L� � P 	 at L � !��L� � P 	 can be canonically identi�ed
with eC��L	 �� C��L	�fconstant functions on Lg

via

f �� �f �� ew����
T �L

�df	�eC��L	� !�NL	�

where NL is the normal bundle of L in P � We now de�ne a norm on
this set by

�����	 oscL�f	 �� max
x�L

f �min
x�L

f

for f � eC��L	� and a length of the Hamiltonian isotopy s �� L � fLsg
between L� and L� by

kLk �

Z �

�
oscLs�fs	ds �

Z �

�
oscL�fs  ��

s
H	��	ds�

where fs � eC��Ls	 is the element corresponding to the tangent vector
at Ls of the path L� i�e��

d

ds
�Ls	� s � 
�� ��
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For given two L�� L� � !��L�� P 	� we de�ne the �pseudo	�distance by

�����	 d�L�� L�	 � inf
�
kLk�

where the in�mum is taken over all � � Dc
��P 	 with ��L�	 � L�� It

immediately follows from ����	 ����	 that d is symmetric and satis�es
the triangle inequality� The main non�trivial question is whether this
pseudo�distance is indeed nondegenerate i�e�� whether it satis�es

�����	 d�L�� L�	 � � if and only if L� � L��

Whether �����	 holds in general is still an open question� but we will
prove later� as a consequence of our construction of new symplectic
invariants� that this is at least true for the case L� � oM � P � T �M
where M is any compact manifold�

Theorem ���� Let P � T �M � � � �d� be the canonical symplectic
structure and L� � oM the zero section of T �M � Then the Hofer�s
distance de�ned as above is nondegenerate�

The topology induced by this distance will be the one we will take
as the topology given on the space of Lagrangian submanifolds when
we consider the continuity property of various symplectic invariants� we
will de�ne in the later sections�

���� Generating functions and Viterbo�s invariants�

For a given Lagrangian submanifold L � T �M � we call a function
S � E � R a generating function for L if L can be expressed as

L �
n�

x�
	S

	x
�e	
����	S
	�

�e	 � �
o
�

where the map � � E �M is a submersion �typically a vector bundle	�
and �S

�� is the �ber derivative and �S
�x �e	 � T �xM is �T �x�	

���dS�e		
which is well�de�ned since we assume Tx� � TeE � TxM is surjective�
We denote the �ber critical set by

�����	 "S � fe � E j
	S

	�
�e	 � �g�

and by iS � "S � T �M the map

�����	 iS�e	 �
�
x�
	S

	x
�e	
	

for e � "S�
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The well�known important facts on the generating function is that the
map iS � "S � T �M is a Lagrangian immersion and the identity

�����	 i�S� � d�S
��
�S

	 on "S

holds� An immediate consequence of �����	 is that if L allows a generat�
ing function� it must be exact� When E is a ��nite dimensional	 vector
bundle over M � one can introduce a special generating function called
a generating function quadratic at in�nity �abbreviated as GFQI	� A
generating function S � E � R is called a GFQI if S�x� �	�Q�x� �	 has
compact support where Q�x� �	 is a �berwise nondegenerate quadratic
form in ��

The following is the basis of the Viterbo�s construction of symplectic
invariants�

Theorem ��� �Laudenbach�Sikorav ���	 ����	 Viterbo ������
If L � ��oM 	 for � � Dc

��T
�M	� then L has a GFQI� Moreover it is

essentially unique up the stabilization and the �ber preserving di�eo�
morphisms�

This has the consequence that the cohomology group H��Sb� Sa	 is
independent of the choice of S but depends only on L if one normalizes
S appropriately� Note that for c 
 � su�ciently large� we have

�Sc� S�c	 � �Qc� Q�c	 � �D�E�	� S�E�		�

and so
H��Sc� S�c	 � H��k�M	� k � dimD�E�	�

which is independent of S as long as c is su�ciently big� Here we denote
by E� the negative bundle of the quadratic form Q� and by D�E�	 and
S�E�	 the disc and the sphere bundle associated to E�� One denotes

E� � Qc� E�� � Q�c

for any such c� Now the Thom isomorphism provides the isomorphism

H��M	� H��D�E�	� S�E�		 	� H��E�� E��	� u �� Tu �� ��u�TE�

where TE� is the Thom class of the vector bundle E��

De�nition ���� Let S be a GFQI for L � ��oM 	 � T �M � For each
u � H��M�R	� we assign the number

c�S� u	 �� inf
�
f� j j��Tu �� � in H��E�� E��	g�
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Under a suitable normalization� one proves that c�S� u	 does not depend
on S but only on L as long as S generates L� Therefore� one could de�ne
c�L� u	� as invariants of L� by the common number

c�L� u	 �� c�S� u	

for suitably normalized S�s� However it is not completely clear what
would be the best normalization in general� To de�ne invariants of
compactly supported Hamiltonian di�eomorphisms of R�n � Viterbo uses
a compacti�cation of Graph � � R

�n � R
�n which provides a natural

normalization in this case� �See 
�� for details�	 One of the main
theorems in 
�� we would like to mention is the following�

Theorem �� �Viterbo ������ Set ��L	 � c�L� �M 	� c�L� �	 where
� � H�M�R	� �M � Hn�M�R	 are the canonical generators respec�
tively� Then we have ��L	 � � and

��L	 � � if and only if L � oM �

���� Action functional� the canonical generating function�

For a notational convenience� we adopt the notation

�����	 H �� L if L � ��H�oM 	�

When H �� L is given� we consider the classical action functional

AH��	 �

Z
��� �

Z �

�
H���t	� t	dt

on the space of paths free at its �nal time

� � f� � I � T �M j ���	 � oMg�

The space � has the natural structure of the �ber bundle

p � ��M� p��	 �� �����		�

where � � T �M �M is the canonical projection� We denote its �ber at
q �M by �q� i�e��

�q ��f� � � j ���	 � T �qMg

�f� � 
�� � � T �M j ���	 � oM � ���	 � T �qMg�
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We recall the �rst variation formula of AH for general path ��

dAH��	� �

Z �

�
��� ��� �	� dH��	�	

� h���	� �����		i � h���	� �����		i�

�����	

where hv� ��p	i is the pairing ��p	�v	� This can be derived by a direct
computation� When we restrict to � � � i�e�� ���	 � oM � �����	 becomes

�����	 dAH��	� �

Z �

�
��� ��� �	� dH��	�	 � h���	� �����		i

since �joM 
 �� From this� we see that the �ber derivative dAH
d� satis�es

that dAh
d� ��	 � � if and only if

�����	 ��cw � dHt��	 � �� i�e�� �� � XH��	�

In other words� we have the �ber critical set of AH

�����	
"AH � f� � � j �� � XH��	g

� f� � � j ��t	 � �tH���H	���p	� p � L � ��H�oM 	g�

Furthermore� it follows from �����	 that the map

iAH � "AH � T �M de�ned as in �����	

is nothing but

�����	 iAH ��	 � ���	 � ��H����		�

Now� �����	 �����	 precisely mean that AH � � � R is a generating
function of L � ��H�oM 	�

#From the description �����	 of "AH � one can associate a number
AH�zpH	 to each p � L where

�����	 zpH�t	 � �tH����H	���p		�

We will adopt this de�nition for zpH throughout this paper�

De�nition ���� �Action spectrum of H�� We de�ne for each
H � Hac

Spec�H	 �� fAH�zpH	 j p � L � ��H�oM 	g

and call it the action spectrum of H�
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The following proposition shows that Spec�H	 depends only on L
up to addition of a constant� as long as H �� L�

Proposition ���� Assume that M is connected and H�K � Hac�

��	 If H�K �� L i�e�� L � ��H�oM 	 � ��K�oM 	� then

�����	 AH�zpH	�AK�zpK	 � c�H�K	

for all all p � L� Furthermore� for a constant c�

�����	 AH�c��z
p
H�c�

	�AH�zpH	 � c�

for all p � L� Therefore by adding an appropriate constant� we can
assume

AH�zpH	 � AK�zpK	 for all p � L

as long as H�K �� L�

��	 For each H � Hac consider the subset of M � R

WH � f�q� r	 j q � ��p	� r � AH�zpH	� p � Lg�

Then WH is a wave front set of L � ��H�oM 	�

Proof of ��� �����	 follows immediately from the fact

zpH�c�
� zpH

and the de�nition of AH � Therefore we prove only �����	� Since L is a
smooth manifold� it is obvious that the function

p �� AH�zpH	�AK�zpK	 �� g�p	

on L is a smooth function� Therefore it is enough to show that the func�
tion g is locally constant since we assume that M and so L is connected�
Therefore we compute its derivative� For each v � TpL� p � L�

dg�p	�v	 � dAH�zpH	��vH	� dAK�zpK	��vK	

where �vH and �vK are the variations of zpH and zpK respectively induced
by v � TpL� More explicitly� we have

�vH�t	 � T�tH�T���H �v		�

�vK�t	 � T�tK�T���K �v		�



relative floer theory ���

Since we assume v � TpL and L � �H�oM 	 � �K�oM 	� we have

�vH��	 � �vK��	 � v�

By the variation formula �����	� we obtain

dAH�zpH	��vH	 � h�vH��	� ��zpH ��		i � hv� ��p	i�

dAK�zpK	��vK	 � h�vK��	� ��zpK��		i � hv� ��p	i�
�����	

and hence dg�p	�v	 � � for all v � TpL i�e�� dg � �� This �nishes the
proof of ��	� q�e�d�

Proof of �
�� Before proving Proposition ��� ��	� we recall the def�
inition of exact Lagrangian submanifolds� If L � T �M is an exact
Lagrangian submanifold� then i�� is exact� i�e�� ��� � df for some func�
tion f on L� The wave front of L is just the projection of the Legendrian
lift eL � f�p� r	 � T �M � R j r � f�p	� p � Lg

to M � R by the map �� � id	 � T �M � R � M � R� The projection
is nothing but

Wf �� f�q� r	 �M � R j q � ��p	� r � f�p	� p � Lg�

Now if we restrict to the case L � ��H�oM 	� the formula �����	 explicitly
shows that one can take the function f de�ned by

f�p	 �� AH�zpH	� zpH�t	 �� �tH���H	���p	

for p � L� Hence the proof� q�e�d�
Note that if H � Hac� then H � c� is also in Hac which makes Hac

more natural to consider than Hc�
Now we study the size of the set of critical values of AH j��S� as a

subset of R� which is in general useful to prove the invariance property of
the symplectic invariants that we shall de�ne later� Similar results were
used before in the study of periodic orbits and the associated invariants
of Hamiltonian di�eomorphisms �see e�g�� 
��	�

Proposition ���� For each submanifold S �M � the set of critical
values of AH j��S� is a compact nowhere dense subset of R� We denote

Spec�H�S	 � the set of critical values of AH j��S�

� fAH�zpH	 j p � �H�oM 	 �N�Sg�
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Proof � Consider the function h � N�S � R de�ned by

h�p	 �� AH�zpH	 for p � N�S�

#From the de�nitions of zpH and AH � it follows that h is a smooth
function de�ned on N�S which is a �nite dimensional manifold� By the
variational formula �����	� we get

dh�p	�v	 � �h��zpH��		� T���H �v	i � h��p	� vi � �h��zpH��		� T���H �v	i

for all v � Tp�N
�S	� If p � �H�oM 	 � N�S� then zpH��	 � oM which

implies that ��zpH��		 � � so that dh�p	 � �� Therefore all the points
p � �H�oM 	�N�S are critical points of h� and the corresponding critical
values are AH�z

p
H	� Hence we have shown that

Spec�H�S	 � the set of critical values of h�

However by the �classical	 Sard�s theorem� the set of critical values of h is
of measure zero and therefore nowhere dense� and so is Spec�H�S	� The
compactness of Spec�H�S	 immediately follows from that it is a closed
subset of Spec�H	 which is compact� Note that Spec�H	 is compact
because we assume that M is compact and so the wave front set of
L � �H�oM 	 is compact for any H� q�e�d�

For the later purposes� it is important to understand the relation
between AH on ��S	 and the Floer�s action functional aS on the space

��L�� L�	 � f� � 
�� � � T �M j ���	 � L�� ���	 � L�g

when

L� � �H�oM 	� L� � N�S�

The crucial property which the functional aS must have is that its gra�
dient �ow in terms of certain L��type metrics on ��L�� L�	 becomes
the Cauchy�Riemann equation with Lagrangian boundary condition as
in ����	� We recall how the functional aS is de�ned in the case where
L� � ��L�	 in 
��� Fix an intersection point p� � L� � L�� For each
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given � � ��L�� L�	�

Figure �

we pick a surface $ drawn as above �such a surface exists if one restricts
to a certain component of ��L�� L�		� and de�ne

�����	 aS��	 �

Z

w�

However in our case L� � �H�oM 	 and L� � N�S as above� this def�
inition does not work in general by two reasons� First� there may not
exist the bounding surface $ and secondly� even if there is� the value
in �����	 may depend on the choice of $� We refer readers to 
�� for
similar discussions concerning this point� So we will de�ne the func�
tional aS directly using the canonical one form � on T �M and the fact
that �jN�S 
 � and L� is an exact Lagrangian submanifold� We choose
fL� � L� � R such that

�����	 dfL� � �jL� �

and de�ne

�����	 aS��	 �

Z
��� � fL�����		

on the space ��L�� L�	� Using the variation formula �����	� we compute
for � � T
���L�� L�		

daS��	��	 �

Z
��� ��� �		dt� h���	� �����		i � hdfL�����		� ���	i

�

Z �

�
��� ��� �		dt�

where the second equality comes from �����	� Therefore the derivative
aS will be the same as that of the Floer�s original functional if it exists�
We will still call aS as above the Floer�s action functional�
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Since fL� is de�ned up to addition of a constant� so is aS � Now we
have the following important fact�

Proposition ���� Let p� and p� � �H�oM 	 � N�S� and consider
them as constant paths in ��L�� L�	� Let zpiH � i � �� � be the elements
in ��M	 de�ned as before� i�e��

zpiH �t	 � �tH����H �pi		 for i � �� ��

Then we have

�����	 AH�zp�H 	�AH�zp�H 	 � aS�p�	� aS�p�	�

By taking the function fL� � AH�zpH	 for p � L� � �H�oM 	� we may
assume that

�����	 AH�zpH	 � aS�p	 for all p � �H�oM 	 �N�S�

Proof � We pick any curve �� in �H�oM 	 with ���	 � p� and
���	 � p�� Then combining �����	� �����	 and that p�� p� � ��L�� L�	
are considered to be constant paths� we have

�����	
AH�zp�H 	�AH�zp�H 	 �

R

�
� �

R

�
dfL�

� fL��p�	� fL��p�	 � aS�p�	� aS�p�	�

which �nishes the proof� q�e�d�

��� Semi�in�nite cycles�

The action functional AH on the space

� � f� � 
�� � � T �M j ���	 � oMg

as a generating function has an advantage over its �nite dimensional ver�
sion in that it is canonical and does not involve any nontrivial choice�
This enables us to capture the geometric insight of the symplectic in�
variants which we are going to construct� via the Floer theory� using the
action functional�

Recall from 
�� and 
�� that the proof of the uniqueness of GFQI
of a given Lagrangian submanifold L � �H�oM 	 up to the stabilization
and the gauge invariance forms one of the crucial ingredient in Viterbo�s
construction and requires some sophisticated topological machinery 
���
Of course� we have to pay o�� the action functional is de�ned on the
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in�nite dimensional path space �� for which it is well known �see e�g��

��	 that the classical critical point theory on T �M has serious limita�
tions in general cases other than when M � R

n � i�e�� T �M � R
�n � C

n �
Still� however� it is very natural and conceptually simpler to develop
analogues to Viterbo�s work 
�� directly working with the action func�
tional AH � � � R� This attempt could be considered as the direct
approach against the �nite dimensional approximation in the critical
point theory of the action functional� There are two major di�culties
to overcome in this attempt�

��	 The standard direct approach to the functional AH � � � R for
general M does not work by various reasons �e�g�� lack of the global co�
ordinates� the failure of Palais�Smale conditions and etc��  Analytical
aspect  

��	 There does not exist the Thom isomorphism on the �bration
p � � � M in the classical algebraic topological sense� because the �ber
�q is in�nite dimensional� More geometrically saying� it is not a priori
obvious which mini�maxing sets one should choose to have the linking
properties and so to pick out certain critical values of AH �  Topological
aspect  

We will overcome these di�culties simultaneously via versions of
the Floer theory of Lagrangian submanifolds� We would like to mention
that Floer himself invented the Floer homology in the precisely same
kind of reasons�

The two di�culties mentioned here turn out to be inter�related� In
the classical critical point theory� the mini�maxing sets are the ones
that de�ne nontrivial cycles in terms of the gradient �ow of the given
functional� In the literature 
��� 
�� 
� and so on� the choice of such
cycles depend on the type of the given functional� Because the classical
action functional is so called strongly inde�nite� the notion of semi�
in�nite cycles has been implicitly used in the literature related to the
periodic orbit problem of the Hamiltonian system on R�n � C n � Mostly
in the traditional direct approach� the global gradient �ow of the action
functional on the Sobolev spaceH����S�� C n	 is well�de�ned and satis�es
versions of Palais�Smale condition� and so one can apply the classical
variational theory using the mountain�pass type lemma� With these
experiences at hand� we will try to choose our semi�in�nite cycles with
respect to which the Floer theory on � works well�
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We start with the formula �����	�

dAH��	��	 �

Z �

�
��� ��� �	� dHt��	�	dt � h���	� �����		i�

As usual� we would like to write down the gradient �ow of AH on � with
respect to some metric on �� We choose an almost complex structure J
on T �M that is compatible with the symplectic structure� We say that
J is compatible to �� if the bilinear form h � i de�ned by

�����	 h � iJ �� ���� J �	

de�nes a Riemannian metric� Then one can re�write �����	 as

�����	 dAH��	��	 �

Z �

�
hJ� �� �XHt��		� �iJdt� h���	� �����		i�

When one tries to write down the equation corresponding to the
gradient �ow of�AH as in the Floer theory� one immediately encounters
a di�culty due to the boundary term h���	� �����	i in �����	� To do the
Floer theory correctly in the analytical point of view� one should try to
get rid of the di�culty by choosing certain subset of � so that if we
restrict the functional AH thereto� the boundary term drops out for the
gradient �ow of the restricted function� It is a remarkable fact that this
attempt of ours to overcome the analytical di�culty gives rise to the
way to associating a semi�in�nite cycle to each compact submanifold of
M and hence solves the topological di�culty mentioned above as well�

#From the de�nition of the canonical one�form � on T �M � we can
re�write the boundary term as

h���	� �����		i � hT����	� ���	i�

Main Observation� The term hT����	� ���	i vanishes if one im�
poses the condition that ���	 lies in the co�normal bundle N�S � T �M
of any submanifold S �M and ���	 is tangent to N�S� because �jN�S 

� for any submanifold S �M �

We now assign to each compact submanifold S �M a semi�in�nite
cycle in � which is linked to� in terms of the gradient �ow of the action
functional AH � the fundamental cycle ��M	 de�ned by

��M	 � f� � 
�� � � T �M j ���	� ���	 � oM g�
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and in particular which cannot be pushed away to the in�nity by the
gradient �ow of AH � This linking property� however� will be detected by
the Floer homology theory� We would like to emphasize that this choice
of the semi�in�nite cycles does not depend on the Hamiltonian H at all
as long as H is asymptotically constant� which will be a crucial ingre�
dient in de�ning our symplectic invariants of Lagrangian submanifolds
in the later sections�

Example ����

��	 When S � fptg� we assign to each q �M the cycle

�fqg �� f� � � j ���	 � T �qMg � �q�

Here we have used the fact that N�fqg � T �qM �

��	 When S � M � we have N�S � oM and so the corresponding cycle
is the fundamental cycle

��M	 � f� � � j ���	 � oMg�

In the rest of this paper� we will �rst develop the Floer theory to
each submanifold S �M and then construct certain symplectic invari�
ants of Lagrangian submanifolds associated to each S� Although the
basic construction of the Floer homology is standard� the construction
of symplectic invariants using the Floer homology is new� In the course
of doing these� we discover many new aspects in the Floer theory itself
and so lay the foundation for serious applications of the Floer theory to
the questions of symplectic topology� We refer readers to 
�� for further
results in this aspect�

�� A C��estimate

We will concern the gradient �ow of AH

��
��S�

with respect to certain

L��type metrics on ��S	 for the given compact submanifold S � M �
It turns out to be very important to vary the metrics on ��S	 suitably
depending on circumstances given� and so we �rst describe the class of
the metrics on ��S	 in detail which we are going to use�

We �rst note that if a Riemannian metric g is given toM � the associ�
ated Levi�Civita connection induces a natural almost complex structure
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on T �M � which we denote by Jg and which we call the canonical almost
complex structure �in terms of the metric g on M	� We are going to
�x the Riemannian metric g on M once for all� This canonical almost
complex structure has the following properties�

��	 Jg is compatible to the canonical symplectic structure w on T �M �
��	 For every �q� p	 � T �M � Jg maps the vertical tangent vectors to

horizontal vectors with respect to the Levi�Civita connection of g�
��	 On the zero section oM � T �M � Jg assigns to each v � TqM �

T�q����T
�M	 the cotangent vector Jg�v	 � g�v� �	 � T �qM � T�q����T

�M	�
Here we use the canonical splitting

T�q����T
�M	 � TqM � T �qM�

We consider the class of compatible almost complex structures J on
T �M such that

J 
 Jg outside a compact set in T �M �

and denote by jc the class

jc �� fJ j J is compatible to � and J 
 Jg

outside a compact subset in T �Mg�

We de�ne the support of J and denote

Supp J �� the closure of fx � T �M j J�x	 �� Jg�x	g�

The main objects that we need in de�ning the metrics on � is the
following�

De�nition ���� Let jc be as above� We de�ne

J c �� fJ � 
�� � � jc j J � fJtg��t�� is a smooth pathg�

Each given J � J c induces a smooth path of Riemannian metrics
g
Jt

�� ���� Jt�	 on T �M � We denote the corresponding norm by j � jJt on
T �T �M	� Using this� we de�ne a metric on the space of paths in T �M �
Let � � 
�� � � T �M be a path and �� � be vector �elds along �� De�ne
the inner product hh�� �iiJ by

����	 hh�� �iiJ ��

Z �

�
h��t	� ��t	iJtdt
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and the associated norm by

����	 k�k�J ��

Z �

�
j��t	j�Jtdt�

Note that these are the inner products and norms of L��type� i�e�� do
not involve derivatives of �� Using these� one can rewrite dAH on � as

dAH��	��	 �

Z �

�
��� ��� �	� dHt��	�	 � h���	� �����		i

�

Z �

�
hJt� ���t	�XHt���t			� ��t	iJt � h���	� �����		i����	

� hhJ� �� �XH��		� � iiJ � h���	� �����		i�

Since we already mentioned that h���	� �����	i drops out when we con�
sider the �negative	 gradient �ow of AH

��
��S�

on the space

��S	 � f� � 
�� � � T �M j ���	 � oM � ���	 � N�Sg�

the negative gradient �ow of AH

��
��S�

in terms of the metric hh � iiJ on

��S	 satis�es the equation

����	

�����
�u
�� � J

�
�u
�t �XH�u	

	
� ��

u��� �	 � oM �

u��� �	 � N�S�

which is a perturbed Cauchy�Riemann equation with Lagrangian bound�
ary conditions� Here we should emphasize that J depends on time in
general and N�S is not compact� Now all the necessary Fredholm prop�
erty and compactness properties used in 
��� 
�� for the case of compact
Lagrangian submanifolds will apply to ����	� provided we establish cer�
tain C��estimates for ������ This C��estimate is the �rst essential step
for the Floer theory on noncompact symplectic manifolds� �See 
�� for
such an estimate for the periodic orbit problem� and 
�� or 
�� for the
Lagrangian intersection	� For the later purpose� we also have to consider
the parametrized versions of ����	� More generally� consider

L � R � 
�� � � T �M � R�

that is smooth and such that there exists a suitable K 
 � such that

����	

�
L��� t� u	 � H��t� u	 for � � �K�

L��� t� u	 � H��t� u	 for � � K�
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where H��H� � Hac� Furthermore J is a smooth family

J � R � 
�� � � jc

satisfying�����
J��� t� u	 � Jg outside a compact set of T �M�

J��� t� u	 � J��t� u	 for � � �K�

J��� t� u	 � J��t� u	 for � � K�

Finally consider an isotopy of submanifolds S � fS�g such that

S� � S� for � � �K�

� S� for � � K�

Then we consider a smooth solution u � R � 
�� � � T �M of

����	

�����
�u
�� � J

�
�u
�t �XL�u	

	
� ��

u��� �	 � oM �

u��� �	 � N�S� �

The following is the main theorem in this section�

Theorem ���� Assume that J� L and S as above� Then there exists
a constant c � c�L� J� S	 
 � such that every solution u of ����	 with

����	 inf
��R

AL����u��		 
 ��� sup
��R

AL����u��		 ��

satis�es

����	 sup
���t���

jp��� t	jg � c�

where we write u��� t	 � �q��� t	� p��� t		 in T �M � and j � jg is the norm
on T �q���t�M induced from the metric g on M �

Proof � First� note that

L��	 � H� if � � �K�

� H� if � � K�

and so if � � �K� then

AL����u��		 � AH��u��		�
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and hence

sup
�������K�

AH��u��		 ��

from the assumption ����	� In particular� we have

����	

Z �K

��

Z �

�

���	u
	�

����
J��t�

�
���	u
	t

�XH��u	
����
J��t�

dtd� ���

since it is the same as

AH��u���		�AH��u��K		�

Similarly at �� we have

�����	

Z �

K

Z �

�

���	u
	�

����
J��t�

�
���	u
	t

�XH� �u	
����
J��t�

dtd� ���

By the standard estimates� we can prove from ����	 and �����	 that

lim
����

u��	 � z�� lim
����

u��	 � z� uniformly�

where z� and z� satisfy the equations� respectively��
�z� � XH��z�	�

z���	 � oM � z���	 � N�S��

�
�z� � XH� �z�	�

z���	 � oM � z���	 � N�S��

Then it must hold that either the sup���t� jp��� t	jg where

u��� t	 � �q��� t	� p��� t		

is realized at � � ��� or the supremum is realized at some point
���� t�	 � %� Since one can easily derive the C��estimate of the Hamil�
tonian paths z��s from the assumption that L is asymptotically constant
and so XL is of compact support� in the �rst case we are done by the
C��estimate of z��s� Therefore we consider only the second case� It will
be enough to prove the following�

Assertion� If Supp L� Supp J � DR where DR � T �M is the disc
bundle

DR �� fu � T �M j jpjg � Rg�

where u��� t	 � �q��� t	� p��� t		� then u���� t�	 � DR�
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Suppose the contrary that u���� t�	 �� DR� say u���� t�	 � 	DR� �
R� 
 R and that there exists an open neighborhood B of ���� t�	 in %
for some � 
 � such that

u�B	 � T �MnDR � T �Mn�Supp L � Supp J	�

and so u satis�es on B

�����	
	u

	�
� Jg

	u

	t
� ��

We consider two cases separately� the cases where ���� t�	 � Int % and
���� t�	 � 	%� Recall that the boundary 	DR is of contact type� and
it is Jg�convex in the sense of Gromov 
��� The following lemma is
well�known e�g� is proven in 
��� Lemma ����

Lemma ���� Let �Z�w� J	 be a calibration �or an almost K�ahler
structure� and its boundary & � 	Z be J�convex� Then no J�holomorphic
curve u in Z can touch & at an interior point of the domain of u�

This immediately rules out the possibility ���� t�	 � Int %� Now
consider the case where ���� t�	 � 	%� i�e�� t� � �� �The case t� � � is
trivially removed since we assume that u��� �	 � oM �	 We consider the
boundary curve

� � u��� �	 � �q��� �	� p��� �		�

which becomes tangent to 	DR� �N
�S at ���� �	� Since N

�S � 	DR� is
Legendrian in 	DR� � the curve is tangent to the contact distribution of
	Dr at ���� �	

f� � T �	DR�	 j � � Jg
�
�r �

�
�r is the radial �eld on T �Mg�

Since u is Jg�holomorphic� u is also tangent to the contact distribution
at ���� �	 and in particular we have

	

	t
jp��� t	j�

���
������

� ��

However� this contradicts to the strong maximum principle applied to
the subharmonic function �with respect to Jg	

��� t	 �� jp��� t	j� on B���� �	

since we can assume Image u
��
B�������

�� 	DR� by choosing � slightly

larger if necessary� This �nishes the assertion and so the proof of The�
orem ���� q�e�d�
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� Regular parameters

In this section� we describe the meaning of the �generic� parameters
for which various moduli spaces that we are going to consider become
smooth manifolds so that various versions of Floer homology which we
introduce should be well�de�ned�

First� we introduce a subset of H � Hac

����	 H� �� fH � H j ��H�oM 	 t oMg�

For any such HamiltonianH � H�� there are only �nitely many solutions
of

����	

�
�z � XH�z	�

z��	 � oM � z��	 � oM �

i�e�� critical points of AH on � or AH

��
��M�

� For given H � H� and

a compact manifold S��� M	� we denote by Emb �S� � M	 the set of
embeddings of S� into M and introduce its subset

EmbH � EmbH�S� � M	 � fS � Emb �S� � M	 j N�S t �H�oM 	g�

For such S � EmbH�S� � M	� there are only �nitely many solutions of

����	

�
�z � XH�z	�

z��	 � oM � z��	 � N�S�

i�e�� critical points of AH

��
��S�

� We will also consider the isotopy class

of a given embedding S� for which we denote by

Iso �S� � M	 � Emb �S� � M	

and

IsoH � IsoH�S� � M	 � Iso �S� � M	 � EmbH�S� � M	�

By the standard transversality theorem� it follows that EmbH�S� � M	
is dense in Emb�S� � M	 in the C��topology� Next� we consider the
regular property of the space of solutions

����	

�������
�u
�� � J

�
�u
�t �XH�u	

�
� ��

u��� �	 � oM �

u��� �	 � N�S�
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Then the proof of the following theorem will be standard now by com�
bining ideas in 
��� 
��� 
��� 
�� and 
���

Theorem ���
��	 Let H � H� and S � EmbH�S� � M	� Then there exists a dense

subset JH�S � J c such that all the solutions of ����� are regular� i�e��
the linearization at every solution is surjective�

��	 Let S � M and H � HS �� fH � H� j �H�oM 	 t N�Sg� Then
there exists a dense subset JS�H � J c such that all the solutions of ����	
are regular�

We will also need the parameterized versions of this theorem�

Theorem ��� ��	 Let H�� H� � H�� S � EmbH
�

� EmbH
�

and
J � JH��S � JH��S� Then there exists a dense subset of

HH�H� �� fH � 
�� � �H j H� � H��H� � H��H � fHsg��s��g

and K � R� such that all the solutions of

����	

�����
�u
�� � J

�
�u
�t �XH�K ����u	

	
� ��

u��� �	 � oM �

u��� �	 � N�S

are regular�

��	 Let S�� S� � EmbH� �S� � M	 and J � JS��H � JS��H � Then
there exists a dense subset of

EmbH�H� ��


S � 
�� � � Emb j S � fSsg��s�� a smooth isotopy with

S� � S�� S� � S�
�

and K � R� such that all the solutions of�����
�u
�� � J

�
�u
�t �XH�u	

	
� ��

u��� �	 � oM �

u��� �	 � N�S�K���

are regular where �K is the function as de�ned in Section ��

��	 Let J�� J� � JH�S� Then there exists a dense subset of

J J�J� ��


J � 
�� � � J c j J � fJsg��s�� is smooth and

J� � J�� J� � J�
�
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and K � R� such that all the solutions of�����
�u
�� � J�

�
�u
�t �XH�u	

	
� ��

u��� �	 � oM �

u��� �	 � N�S

are regular�

One could state more general version of this kind of theorem� but we
state the theorems in a way that they are suitable for studying various
invariance properties of the Floer homology which we de�ne later� For
the notational convenience� we denote

Nreg�S	 � f�H�J	 � H� J c j ����	 is regular �g�����	

Nreg�H	 � f�S� J	 � Emb�S� � M	� J c j ����	 is regular �g�����	

Nreg � f�H�S	 � Hac � Emb �S� � M	 j �H�oM 	 t N�Sg�����	

It follows thatY
H�HS

fHg � JS�H � Nreg�S	 � H�J c�

Y
S�EmbH

fSg � JH�S � Nreg�H	 � Emb�S� � M	� J c�

and all the inclusions are dense�

�� Floer homology of submanifolds

Let H � H�� S � EmbH and J � JH�S� The gradient trajectories of
AH

��
��S�

on ��S	 with respect to the metric hh � iiJ de�ned as in ����	

are solutions of the following perturbed Cauchy�Riemann equation

����	

�����
�u
�� � J

�
�u
�t �XH�u	

	
� ��

u��� �	 � oM �

u��� �	 � N�S�

We denote byMJ�H�S	 the set of bounded solutions of ����	� i�e�� those
with

����	 inf
��R

AH�u��		 
 ��� sup
��R

AH�u��		 ���
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By the monotonically decreasing property of AH along the trajectory�
we also have

inf
��R

AH�u��		 � lim
���

AH�u��		�

sup
��R

AH�u��		 � lim
���

AH�u��		�

Note that the stationary points for the �ow ����	 are solutions of the
Hamilton�s equation

����	

�
�z � XH�z	�

z��	 � oM � z��	 � N�S�

and each of them can be written as

z�t	 � �tH����H �p		 � zpH�t	

for some p � oM �N�S and vice versa� We de�ne

CF �H�S � M	 �


z � 
�� � � T �M j z solves ����	

�


zpH j p � oM �N�S

�
�

Because of the choice of H � H�� S � EmbH � there are only �nitely
many elements in CF �H�S � M	� The following two theorems� will
be proven in the end of this section� We would like to emphasize that
unlikely from the case of periodic orbit problems neither of the �canon�
ical	 grading nor the coherent orientations exists in the general relative
Floer theory as in 
�� or 
��� �See 
�� for the non�canonical grading
assigned for the geometric version of the Floer homology of Lagrangian
intersections�	 The existence of these canonical grading and the coher�
ent orientations in our relative Floer theory soly depends on the special
circumstance that we are looking at the Lagrangian submanifolds oM
and N�S in the cotangent bundles T �M � Some more detailed discus�
sions on the coherent orientation in relation to the Poincar'e duality will
be given in 
��� and the complete treatment of the coherent orientation
question will be carried out elsewhere in the more general context of
Fukaya�s A��structure� In this paper� since this orientation question is
not the main issue� we will be content to give the complete proof of the
orientability of the Floer cells MJ�H�S � z�� z�	 and to refer to 
���

�� for the details of providing the coherent orientations that are com�
patible to the gluing procedure� Those who feel uncomfortable about
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the coherent orientation can safely take Z��coe�cients for the Floer ho�
mology at least in this paper� but we believe that it will be important
to de�ne the Floer homology with arbitrary coe�cients for the more
elaborate applications in the future�

Theorem ��� �Canonical grading�� For each solution z of ������
there exists a canonically assigned Maslov index that has the values in
�
�Z� We denote this map by

�S � CF �H�S � M	� �
�Z�

Furthermore� �S has the following properties�

��	 �S�
�
� dimS � Z and for each solution u of ����	 with u���	 �

z�� u���	 � z�� we have the Fredholm index of u given by

����	 Indexu � �S�z
�	� �S�z

�	�

��	 Consider the time�independent Hamiltonian F � f  �� f �
C��M	 which is de�ned as described after Theorem ��� below� Let
p � Graph df � N�S and so x � ��p	 � Crit �f

��
S
	� Denote by zx�t	 �

�x� tdf�x		 which is the Hamiltonian path of F with zx��	 � oM � zx��	 �
N�S� Then we have

����	 �S�zx	 � �Sf �x	�
�
� dimS

where �Sf is the Morse index of f
��
S
at x on S�

Theorem ��� �Coherent orientation�� ��	 Let �H�S� J	 be generic
in the isotopy class 
H�S� J � For each z�� z� � CF �H�S � M	� there
exists an orientation of MJ�z

�� z�	� i�e�� the determinant bundle

Det �MJ�z
�� z�	

whose �ber at u �MJ�z
�� z�	 is the one�dimensional real vector space

det�D	J�H�u		 �� !max�Ker D	J�H�u		� !max�Coker D	J�H�u		

is trivial� The same is true for the parametrized version of the Floer
cells M�H�S� J	 for the generic paths �H�S� J	 as in Section ��

��	 Furthermore there exist a coherent orientation �in the sense of
	

�� 	
��� on the set of all MJ�H�S	�s and M�H�S� J	 over �H�S� J	
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and the paths �H�S� J	 in each isotopy class� We denote the set of such
coherent orientations by Or�
H�S� J  � M	 � Or�
S � M	�

For the moment� we postpone the proofs of these theorems until the
end of this section and proceed� We de�ne the grading on CF �H�S � M	
by

k � �S�z	 �
�
�dim S

and form a Z�graded free abelian group �i�e�� Z�module	CF��H�S � M	�
In fact� we can also consider free G�module for any abelian group G�

It is also possible and maybe more natural to give the grading to
CF �H�S � M	 by the Maslov index itself not by the above formula�
allowing the shift by the half integer �

�dim S� when we consider the
assignment �H�S � M	 �� CF �H�S � M	 as a �functor� in a categorical
approach� Compare this with the grading provided in the non�relative
theory in 
��� 
�� 
�� and 
��� But in this paper� we prefer to use
the above integer grading which will coincide with the grading in the
singular homology under the isomorphism in Theorem ��� below and
which makes it easier to keep track of the grading under the pants
product in 
���

We �x a coherent orientation � � Or�
S � M	� Now for each z�� z� �
CF �H�S � M	 with ��z�	 � ��z�	 � � each element u � MJ�z

�� z�	
de�nes its �ow orientation 
u� � We compare this �ow orientation 
u�  of
the �ow with the orientation ��u	 induced from the coherent orientation
de�ned in Theorem ���� we de�ne the sign ��u	 � f����g by

��u	 � ��u	
u� �

We de�ne for such z� and z�

����	 n��H�J��z
�� z�	 ��

X
u�MJ �z��z��

��u	

and a homomorphism 	�H�J� � CF��H�S � M	� CF��H�S � M	 by

����	 	��H�J��z
�	 �

X
�

n�H�J��z
�� z�	z��

By de�nition� 	��H�J� has degree �� with respect to the grading given by
Theorem ���� By the standard compactness and cobordism argument
�see 
��� 
�� or 
��	� we can prove that 	��H�J� satis�es

	��H�J�  	
�
�H�J� � ��
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and so we are given a graded complex �CF��H�S � M	� 	��H�J�	�

In the present paper� we will mainly concern Z or Z� coe�cients�
and unless otherwise stated� we will always take Z as the coe�cient�

De�nition ���� We de�ne� for each regular parameter �H�S� J	�

HF �
� �H�S� J � M	 � Ker 	��H�J��Im 	��H�J�

and call it the Floer homology of �H�S� J	 on M �with respect to the
coherent orientation �	�

The following theorem can be proven again by the standard com�
pactness argument�

Theorem ��� For two regular parameters �H�� S�� J�	 and
�H�� S� � J�	 isotopic to each other� there is the canonical isomorphism

h��� � HF �
� �H

�� S�� J� � M	� HF �
� �H

� � S�� J� � M	

that preserves the grading�

The proof of this theorem follows ideas from 
�� and 
��� But we
would like to recall how the construction of the isomorphism goes be�
cause when we study the �ltration� it will be essential to understand the
�best� way of choosing the chain homomorphism between CF��H

�� S�	
and CF��H

�� S�	 that induces the isomorphism in Theorem ����
We �x a monotone function � � R � 
�� � such that

���	 � � if � � ���

� � if � 
 ��

and de�ne �K��	 � ����K	 for K 
 �� We choose a path from 
�� � to
the parameter space

f�Hs� Ss� Js	 j s � 
�� �� �H�� S�� J�	 ��H�� S�� J�	�

�H�� S�� J�	 ��H�� S� � J�	g

such that if we denote

�H�S� J	 � f�H�K���� S�K���� J�K ���	g�������

then all the solutions of the equation

����	

�����
�u
�� � J

�
�u
�t �XH�u	

	
� ��

u��� �	 � oM �

u��� �	 � N�S
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become regular for su�ciently large K 
 �� Again the space of
�H�S� J�K	 will be dense among the set of paths connecting �H�� S�� J�	�
�H� � S�� J�	 and K � R�

For each given z� � CF��H
�� S�	 and z� � CF��H

� � S�	� we de�ne

MK�z�� z�	 �


u � %� T �M j u solves ����	 and

lim
����

u��	 � z�� lim
����

u��	 � z�
�
�

Using the orientations provided by Theorem ���� we de�ne an integer
similarly as in ����	

n����z
�� z�	 �� ��MK�z�� z�		 for ��z�	� ��z�	 � ��

and the chain map h�� � CF��H
�� S�	� CF��H

� � S�	 by

����	 h����z
�	 �

X
n����z

�� z�	z��

We would like to emphasize that from the de�nition� only those pairs
�z�� z�	 for which the equation ����� has a solution with the given asymp�
totic condition

lim
����

u��	 � z�� lim
����

u��	 � z�

give nontrivial contribution in ����	� This fact is the one which en�
ables us later to estimate the change of the �ltration under the various
homomorphisms between the Floer homology for di�erent parameters�

Finally� we also have the following theorem whose proof will be a
modi�cation� taking the canonical coherent orientation into account� to
that in 
�� which in turn follows Floer�s idea in 
���

Theorem ���� Let �H�S� J	 be regular and �x the coherent orien�
tation � � Or�
S � M	 provided as in Section � 	

�� Then there exists
an isomorphism

F�H�S�J� � H��S�Z	� HF �
� �H�S� J � M	

that preserves grading� where H��S�Z	 is the singular homology of M �
In particular� HF��H�S� J � M	 �� f�g� We will call this coherent
orientation the canonical coherent orientation�

We brie�y outline the idea of the proof in 
�� and 
��� incorpo�
rating the coherent orientation� to explain how the �ltration on the
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Floer homology HF ��H�S� J � M	 is a�ected by the homomorphism
F�H�S�J� � H��S�Z	 � HF��H�S� J � M	� We �rst choose a tubu�
lar neighborhood U of S which we identify with the normal bundle
�� � NS � S� Then we choose a smooth function f� on S that is of
Morse�Smale type and consider the function f�  �� on U � We extend
this to M by a cut�o� function and denote the extension by f � We now
de�ne the �time�independent	 Hamiltonian

H� � f  � � T �M � R�

Then it is easy to prove� following the idea in 
�� and 
��� the solutions
of the equation �

�z � XH��z	�

z��	 � oM � z��	 � N�S

have one�to�one correspondence with the critical points of f
��
S
� f�� the

restriction of f to S� Furthermore� following the idea of 
�� one can
prove that any element u �MJg�H�� S	 is t�independent provided jf jC�

is su�ciently small� By the equation ����	 and the choice of H�� we see
that any such u has the form

u��� t	 � ���	

for some gradient trajectory � of f jS � f�� Once this is proven� the
assignment

� �Mg�f jS	� u��� t	 �� ���	

provides a natural di�eomorphism between the Morse complexMg�f
��
S
	

and MJg�H�� S	� Furthermore under this natural di�eomorphism� the
canonical coherent orientation � given in Theorem ��� induces a coher�
ent orientation onMg�f

��
S
	 that coincides with the standard orientation

as in Section � 
�� which is provided by giving orientations to the un�
stable manifolds of the Morse complex� Then combining this with Theo�
rem ��� 
�� �from which one can easily derive that the Morse homology
with this coherent orientation on the Morse complex is isomorphic to the
singular homology	� we obtain that the above di�eomorphism induces
a natural isomorphism between H��S�Z	 and HF �

� �H�� S� Jg � M	� For
the general �H�S� J	� we apply Theorem ��� to HF �

� �H�� S� Jg � M	 and
HF �

� �H�S� J � M	� We would like to note that by making jf jC� as small
as we want� the width of the action spectrum Spec�H�� S	 can be made
arbitrarily close to zero�

One immediate corollary of Theorem ��� is
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Corollary ���� For any �H�S	 � Nreg� the following holds

��N�S � �H�oM 		 � rank H��S�Z	�

provided N�S t �H�oM 	�

This corollary can be interpreted as that the cycle ��S	 is linked to
the fundamental cycle ��M	� It is also a consequence of the existence
of generating function quadratic at in�nity�

Example ���� Let � be the canonical coherent orientation as above�

��	 When S � M � we have

HF��H�S� J � M	 � HF��H�M� J � M	 � H��M�Z	�

��	 When S � fptg� we have

HF �
� �H� fqg� J � M	 � Z�

��	 When S � S�� we have

HF �
� �H�S� J � M	 � Z� Z�

Now� we go back to the questions of grading and orientations�

���� Canonical grading�

Let S � M be a given compact submanifold� We will assign a
canonically de�ned half�integer� which we call the Maslov index of the
Hamiltonian path z � 
�� � � T �M � which is a solution of

�����	

�
�z � XH�z	

z��	 � oM � z��	 � N�S�

The de�nition of the Maslov index of general pairs of Lagrangian paths
in R�n �� C n	 has been given by 
�� or 
��� which we will use to de�ne
the Maslov index for solutions of �����	� We will mostly follow the expo�
sition given in 
��� 
�� except slight di�erences of the conventions and
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the notation used� We will de�ne the Maslov index of z by trivializing
the vector bundle z�TX over 
�� ��

One could attempt to de�ne the Maslov index of the Hamiltonian
paths in general �P�w	 with general boundary conditions L�� L� � P �
i�e�� of the solutions

�����	

�
�z � XH�z	�

z��	 � L�� z��	 � L��

However in this generality� there will be no canonical de�nition of the
index since the de�nition in general depends on the choice of trivializa�
tion�

The crucial observation of ours is that on X � T �M � there is a
certain canonical class of symplectic trivialization

� � z�TX � 
�� � � C
n

due to the fact that we are given a �xed Riemannian metric g on M
and so the tangent bundle TX has the canonical splitting as the sum of
Lagrangian subbundle

TX � H � V�

where V is the vertical tangent bundle the �ber Vp of which is canon�
ically isomorphic to T ���p�M � and H is the horizontal subbundle with
respect to the Levi�Civita connection of g the �ber Hp of which is iso�
morphic to T��p�M under the map T� � TX � TM �

We now consider the class of symplectic trivializations � � z�TX �

�� � � Rn � �Rn	� 	� 
�� � � C n that satis�es

�����	 ��Hz�t�	 
 R
n � ��Vz�t�	 
 �Rn	� 	� iRn

for all t � 
�� �� we denote the class by T � Such a trivialization al�
ways exists because 
�� � is contractible� For example� such a � can
be obtained by the parallel transport along the paths which are the
composition of two linear paths

��� �	 � ��� �	 � ��� t	�

Here the parallel transport is with respect to the natural connection on
u�TX induced by the Levi�Civita connection with respect to the metric
g on M � The transition map between two such trivializations � and (
in T is given by the form

�����	 (  ����t� v	 � �t� A���t	v	� A���t	 � Q�t	� �Q��t		���
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where Q�t	 � GL�n�R	 and Q��t	 is the conjugate to Q�t	� In other
words� we have reduced the structure group of z�TX from Sp��n�R	 to
a subgroup of Sp��n�R	 that is isomorphic to GL�n�R	� Now note that
each solution z of �����	 has the form

z�t	 � �tH����H �p		� p � �H�oM 	 �N�S�

where �tH is the Hamiltonian �ow of H� For given such z� we choose a
trivialization � � T � In this trivialization� we will have

�����	 ��Tz���oM 	 � R
n � ��Tz���N

�S	 � U� � U�� �

where U� � R
n is a k � dimS dimensional subspace and �U�	

� � �Rn	�

is the annihilator of U�� We denote

�����	 V � �� ��Tz���N
�S	 � U� � U��

and de�ne the symplectic path B� � 
�� � � Sp��n	 by

�����	 B��t	 �� �  T�tH  �
�� � C n 	� f�g � C

n � ftg � C
n 	� C

n �

Following the de�nition of 
��� we now consider the Maslov index

��Gr�B�	�R
n � V �	�

which becomes the same as ��B��R
n	� V �	�

The following lemma is the crucial lemma that enables us to de�ne
the canonical grading in this special circumstances of �����	� which will
not exist in the general context of �����	�

Lemma ���� If �� ( � T � then

��B��R
n	� V �	 � ��B��R

n	� V �	�

Proof � From �����	 and �����	� it follows that

V � � A����	 � V
��

B��t	 � A���t	B��t	A����	
���

so that

��B��t	 � R
n � V �	 � ��A���t	B��t	A����	

��
R
n � A����	 � V

�	�
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Using the fact that A���t	 has the block diagonal form as in �����	� we
have

A����	
�� � Rn 
 R

n �

Applying this and the naturality axiom� Theorem ��� 
��� yields

�����	 ��B��A	 � R
n � V �	 � ��Rn � B��t	

��A���t	
��A����	 � V

�	�

Now� we consider the homotopy fBsg��s�� de�ned by

Bs�t	 �� B��t	
��A���st	

��A���s	� t � 
�� �

and the Lagrangian path !s�t	 �� Bs�t	 � V
�� This homotopy has the

property that for all s

!s��	 � B���	
��A���s	 � V

� � A���s	 � V
�

� �Q�s	�Q��s	��	�U� � U�� 	

� �Q�s	U�	� �Q�s	U�	
� � "k�R

n	�

!s��	 � B���	
�� � V � � "	�R

n	�

where k � dimS� � � dimT��H�Tz���oM 	 � Tz����N
�S	 and

"k�R
n	 �� fV � !�n	 j dim V � Rn � k g�

In other words� the homotopy !s is a stratum homotopy with respect to
R
n in the sense of 
��� By Theorem ��� 
��� we conclude ��Rn �!�	 �

��Rn �!�	� However we have

!��t	 � B��t	
�� � V ��

!��t	 � B��t	
��A���t	

��A����	 � V
��

and hence

��Rn � B��t	
�� � V �	 � ��Rn � B��t	

��A���t	
��A����	 � V

�	�

Combining this with �����	� we have proven

��B��t� � R
n � V �	 � ��Rn � B��t��� � V

�	�

By applying the naturality axiom Theorem ��� 
�� to the right�hand
side again� we have �nished the proof� q�e�d�

Now� we are ready to de�ne the canonical Maslov index of z�
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De�nition ���� The Maslov index of z of a solution of �����	 is
denoted as �S�z	 and given by

�S�z	 � ��� Gr�B�	�R
n � V �	 � ���B� � R

n � V �	

for a trivialization �and so for any trivialization	 � in T �

The sign is so chosen that we have ����	 and ����	 in Theorem ���
not with the opposite signs�

Proof of Theorem �� ��� The statement �S ���� dim S � Z is an
immediate consequence of Theorem ��� 
��� and so we will just prove
the second statement� Let u � R � 
�� � � T �M be a solution of

�����	

�����
�u
�� � J

�
�u
�t �XH�u		 � ��

u��� �	 � oM �

u��� �	 � N�S�

We denote

	J�H�u	 ��
	u

	�
� J

�	u
	t

�XH�u		�

Under the assumption
��H�oM 	 t N�S

the linearization operator Eu � TuF��� � L�u becomes a Fredholm oper�
ator� We recall

W���
u �� TuF

���

� f� �W ����u�TX	 j ���� �	 � Tu�����O� ���� �	 � Tu������N
�S	g�

L�u � L��u�TX	�

and Eu �� D	J�H�u	� the covariant linearization of 	J�H with respect
to the canonical connection induced from the Levi�Civita connection on
X � T �M � Again we trivialize the bundle u�TX so that

�����	 ��Hu���t�	 
 R
n � ��Vu���t�	 
 �Rn	�

for all ��� t	� which is again possible because R�
�� � is contractible� We
denote by Index��u	 the Fredholm index of the push�forward operator
L�
u �� ��Eu � W ���

��
� L where

W ���
��

��f� �W ����R � 
�� �� C n	 j ���� �	 � R
n � ���� �	 � !���	g�

L� �L��R � 
�� �� C n	�
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To compare Index��u	 and �S�u���		 de�ned in De�nition ���� we
require that the trivialization

� � u�TX � R � 
�� � � C
n

extends the trivializations at � � �� �xed in advance

�	 � z�	TX � 
�� � � C
n � z	 � u���	�

which are in the class T � Such an extension is always possible be�
cause one can prove that the class T is connected in an obvious sense�
Next� we consider the push�forward operator ��Eu � W ���

��
� L�� By a

straightforward computation� one can prove that this operator becomes
an operator of the Cauchy�Riemann type�

	J�T���� �� ��
�t � J ��

�t � T��

���� �	 � Rn � ���� �	 � !�
� ��	�

where J and T satisfy the following properties �Compare with the con�
ditions �CR������	 in Section � 
���	�

��	 The almost complex structures J � R� 
�� � � End �R�n	 satisfy

�����	 lim
��	�

sup
��t��

kJ��� t	 � J���� t	k � ��

��	 The function T � R � 
�� � � End �R�n	 satis�es

�����	 lim
��	�

sup
��t��

kT ��� t	 � T ���� t	k � ��

We denote the asymptotic operators T ��� �	 by T	�
��	 Let DXH�z	 be the covariant linearization of XH along the Hamil�

tonian path z� Then

��		�DXH�z		 � J���� t	 � T ���� t	�

��	 Let (T� � 
�� � � Sp��n	 be de�ned by the equations

	(T�

	t
� J���� t	T ���� t	(T� � ��

(T���	 � I�
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Then the Lagrangian subspaces (T��R
n	 are transverse to !�� respec�

tively�

We denote� for each �J� T�!	� its asymptotic limits by �J	� T	�!		
and the asymptotic operators of 	J�T�� by

A	 � J	
	

	t
� T	 on

W ���
	 � f� �W ����
�� �� C n	 j ���	 � R

n � ���	 � !	g respectively�

Now� we quote a theorem from 
�� that applies to the class of op�
erators considered above�

Lemma ���� �Theorem ��� ������ The Fredholm operator
	J�T��� � W ���

��
� L� has the index given by

Index 	J�T��� � ��� Gr�(�	�Rn � !��	 � ��Gr�(�	�Rn � !��	

� ��&�Rn � !�	

�����	

� ���(� � Rn �!��	 � ��(� � Rn �!��	 � ��Rn �!�	�

where & is the diagonal in C n � C n �

Remark ����� We would like to note that in 
�� the authors
considered operators of the type� in our notation�

	

	�
� J

	

	t
� S�

Incorporation of these di�erences change the signs of the terms in the
formula from Theorem ���� 
���

We now note that in �����	� the �rst two terms are exactly�

�S�u���		� �S�u���		

and therefore to prove Theorem �����	� we have only to prove

��Rn �!�	 � ��

However� from the de�nition !���	 � ��Tu������N
�S		 and the way we

choose the trivialization �� we have

!���	 � U���	� �U���		
��
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where U���	 � R
n is a subspace of dimension k � dimS� In other

words� !�
� ��	 lies in the same �xed stratum "k�R

n	 for all � � Now the
zero axiom from 
�� immediately implies

��Rn �!�	 � ��

which �nishes the proof� q�e�d�

Proof of Theorem ���
�� Recall �rst that the Hamiltonian �ow of
the Hamiltonian F � f  � is just the vertical linear translation given
by

�q� p	 ���q� p� tdf�q		� i�e��

�tF �q� p	 ��q� p� tdf�q		�
�����	

where f � M � R is a smooth function� When we choose f�x� �	 � fS�x	
in a tubular neighborhood identi�ed with the normal bundle of S in M �
if ��F �q� p	 � N�S� then we have

� �� �i�e�� q � �x� �	 � S	�

dfS�x	 �� �i�e�� x is a critical point of fS	�

The corresponding Hamiltonian path is given by

zx�t	 � �x� �� �� �	

in this splitting� By choosing the canonical coordinates around x� i�e��
on T �M

��
U

where U is a neighborhood of x in M � we may assume that

M � Rn � S � Rk � f�g � Rn and �x� �	 is the coordinates in terms of
the splitting Rn � Rk � Rn�k �

We denote the corresponding conjugate coordinates by �px� p�	� In
terms of this coordinates� the map �����	 can be written as

�����	 �tF �x� �� px� p�	 � �x� �� px � t
	fs
	x

� p�	�

Therefore� we can write

�����	 T�tF �x� �� px� p�	 �

�BB
I � � �
� I � �

td�fS�x	 � I �
� � � I

�CCA
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in this coordinates� On the other hand� we have

�����	 V � � �Rk � f�g	 � �f�g � �Rn�k 	�	

in Rn � �Rn	� � C n � One can easily check that since we assume
��F �oM 	 t N�S� i�e�� that d�fS�x	 is nondegenerate for each �x� �	 �
��F �oM 	 �N�S� we can conclude that for �p � �x� �� px� p�	

�T�tF ��p	� �p	 � R
n � V �

if and only if

t � �� � � � and x � Crit fS�

We now recall the de�nition from 
�� of the Maslov index for a curve
! � 
a� b� !�n	 and a �xed V �

��!� V 	 �� �
� sign $�!� V� a	 �

X
a�t�b

sign $�!� V� t	 � �
� sign $�!� V� b	�

where $�!� V� t	 is a quadratic form de�ned on !�t	�V � which is called
the crossing form in 
��� Therefore� we have for the path t �� T�tF �
R
n � � � t � ��

�����	 ��T�tF � R
n � V �	 � �

� sign $�T�tF � R
n � V �� �	�

and so it remains to compute the signature of the crossing form
$�T�tF � R

n � V �� �	� Using the expressions �����	� �����	 and Theorem
��� 
��� it is straightforward to check

sign $�T�tF � R
n � V �� �	 � sign d�fS�x	

� dimS � ��fS �x	�

where �fS�x	 is the index of d�fS�x	� Hence we have

�S�zx	 � ���T�tF � R
n � V �	 � ��

� dimS � �fS�x	�

which �nishes the proof of Theorem �����	� q�e�d�

���� Coherent orientations�

In this section� we will give a complete proof of Theorem ��� ��	 and
follow the line of the reasoning given in 
�� for the proof of Theorem
��� ��	� A more general discussion on the orientation question in the
context of A��structure will be given elsewhere�
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The central problem in the approach of 
�� �or in the orientation
problem of other moduli spaces in general	 is to prove that the deter�
minant bundle

Det�MJ�z
�� z�	

is trivial for all �z�� z�	 � CF �H�S � M	� Once this has been done� the
rest of the arguments proving the existence of the coherent orientations
compatible to the gluing procedure� is well described in Section ��� 
���
which can be also applied to our case� In fact� our case will be simpler
than 
�� in the proof by two reasons� First� there occurs no bubbling
in our case and secondly we have a canonical class of trivializations of
u�TX that satisfy �����	�

We would like to take this chance to emphasize that in the general
relative Floer theory where the bubbling phenomenon exists� it is not
true in general that the above determinant bundle is trivial� Even the
simplermoduli space of pseudo�holomorphic discs may not be orientable
in general� which one should compare with the fact that themoduli space
of pseudo�holomorphic spheres is always orientable� The orientation
problem in the relative Floer theory is di�erent from other orientation
problems from the periodic orbit problem �in symplectic geometry	 or
from the gauge theory� in that the former is in the realm of the index
theory of the elliptic boundary value problem� while others do not involve
boundary values� Furthermore neither the moduli space MJ�z

�� z�	 is
simply connected� nor the space

F�z�� z�	 � fu � C��R � 
�� �� T �M	 j u��� �	 � oM � u��� �	 � N�S�

lim
����

u��	 � z�� lim
���

u��	 � z� g

nor the space of the corresponding operator family is contractible in
general� Therefore there is no a priori reason why the determinant
bundle is trivial and so we really have to carefully analyze the family
of operators involved in this index theory� For this purpose� let us �rst
study the linearization operator of 	H�J at u �MJ�H�S	�

For each u � MJ �z
�� z�	 � MJ �H�S � z�� z�	� we consider the

linearization operator

Eu �� D	H�J�u	 �W
���
u � L�u�

which we will study through the trivializations � � �u � u�TX �
�R � 
�� �	 � C n that satisfy �����	� As we have mentioned before� the
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operator ��u	�Eu � �u  Eu  ���u is of the form

	J�T��� ��
	

	�
� J

	

	t
� T

that satis�es ��	���	 in Section ���� which acts on the space

W ���
��

�


� �W ����R � 
�� �� C n	 j ���� �	 � R

n � ���� �	 � !���	 g�

where !�
� ��	 � U���	 � �U���		� � R

n � �Rn	� with dim U���	 �
dim S �� k� We denote

J � fJ � R � 
�� � � End�R�n	 j J� � �id� J compatible to ��

and satisfying �����	 g�

S � fT � R � 
�� � � End�R�n	 j T satis�es �����	 g�

L � f! � R � !�n	 j !��	� !���	 as � � ��g�

" � f! � L j !��	 � "k�R
n	 g�

� � f! � L j !��	 � U��	� �U��		�� U��	 � Grk�R
n	 g�

Note from the de�nitions that � � " � L� For each given asymptotic
operators A	 � �J	� T	�!		� satisfying ��	 in Section ���� we de�ne

�J � S � L	A� � f�J� T�!	 � J � S � L ��J� T�!	 satis�es ��	� ��	

and ��	 in Section ��� g�

and �J � S � "	A� and �J � S � �	A� similarly� We also de�ne

L�� � f! � L j !���	 � !�� !���	 � !� g�

and similarly for "�� or ����
For each u � MJ�z

�� z�	� we trivialize u�TX by the parallel trans�
port described as before and denote this canonical trivialization by ��
Then the assignment u �� ��	�Eu de�nes a map from MJ�z

�� z�	 to
�J �S ��	A�� � �J �S �L	A�� where A�� is the asymptotic opera�
tors naturally induced from the operators ��	�Eu� Note that all ��	�Eu

have the same asymptotic operators A�� as long as u �MJ�z
�� z�	 for

�xed z�� z� � We denote this �Gauss� map by

G �MJ�z
�� z�	� �J � S � L	A�� �

and then the bundle Det�MJ�z
�� z�	 is just the pull�back bundle by

the map G of the universal determinant bundle

�����	 Det� �J � S � L	A�� �
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The �ber of this universal bundle is de�ned as follows� For each

�J� T�!	 � �J � S � L	A�� �

we form the operator

	J�T�� �
	

	�
� J

	

	t
� T

on the space

W ���
� �



� �W ����R � 
�� �� C n	 j ���� �	 � R

n � ���� �	 � ! g�

which becomes a Fredholm operator due to the conditions ��	� ��	 and
��	� and so both Ker �	J�T��	 and Coker�	J�T��	 become �nite dimen�
sional real vector spaces� Hence we can form the one�dimensional �real	
vector space

det�	J�T��	 �� �max�Ker 	J�T��	� �
max�Coker 	J�T��	�

Since the image of G lies in �J � S � �	A�� � to prove the triviality of

Det�MJ�z
�� z�	� it will be enough to show that the restriction

�����	 Det� �J � S � �	A��

of the universal determinant bundle �����	 is trivial� We start with the
following lemma but omit the proof which is an easy consequence of
the facts that both the space of compatible almost complex structure
and the space of endomorphisms are contractible and that "��R

n	 is
contractible�

Lemma ����� The �bration

�J � S � L	A� � L�� � �J� T�!	 �� !

has �weakly� contractible �bers where the union is over all A	 satisfying
����
� and ���� and in particular so does the restriction

�J � S ��	A� � ���

when !	 � U	 � �U		
� with U	 � Grk�R

n	�

Noting that when S � M � � � f the constant map� Rng �recall that
Grn�R

n	 � fRng	� we have the following immediate consequence of this
lemma�
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Corollary ����� For each �z�� z�	� the determinant bundle Det�
MJ�z

�� z�	 is trivial when S � M �

For the general submanifold S �M � we have to further analyze the
inclusion map ��� �� L�� � The main proposition then is

Proposition ���� Let !	 � U	��U		
� � "k�R

n	 � !�n	� Then
the inclusion map ��� �� L�� is homotopic to the constant map�

Once we have proven this� the triviality of the bundle �����	 will
immediately follow because it is the pull�back bundle of the universal
bundle �����	 under the inclusion map

�J � S � �	A� �� �J � S � L	A�

which is homotopic to the constant map� Therefore to �nish the proof
of Theorem ���� it remains to prove Proposition ����� In fact� we will
prove that the inclusion map

"�� �� L��

is homotopic to the constant map� Recall that by de�nition� both "��

and !�� are the subsets of the paths connecting !� and !� in "k�R
n	

and !�n	 respectively� Hence� the above assertion will be an immediate
consequence of the following theorem�

Theorem ����� For each �open� stratum "k�R
n	� the inclusion map

j � "k�R
n	 �� !�n	

is homotopic to the constant map� In other words� each stratum "k�R
n	

is contractible to a point in !�n	�

Remark ����� We would like to emphasize that the space "k�R
n	

itself is not contractible� In fact� it is a �ber bundle over Grk�R
n	 with

�ber !��n � k	 	� Sym �Rn�k 	� Therefore "k�R
n	 is a deformation re�

tract to Grk�R
n	� Only when k � � or k � n� the !k�R

n	 is contractible�
Although the latter is a well�known fact� Theorem ���� does not seem
to be known previously in the literature� as far as we know�

To prove Theorem ����� we need some preliminary known facts on
the Lagrangian Grassmannian !�n	 �e�g�� see 
�	�

De�nition ����� The train of a given point of !�n	 is the set of all
Lagrangian subspaces which are not transverse to the given one� The
given point is called the vertex of the train�
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For example� the train of Rn � C
n is just the standard Maslov cycle

!��n	 � "��Rn	�

De�nition ����� We call positive vectors on !�n	 the velocity vec�
tors of the motions of Lagrangian planes under the action of the systems
with positive�de�nite quadratic Hamiltonians�

It was proven in 
� that positive vectors do not belong to the tangent
cone of any train� and the set of positive vectors at V � !�n	 forms a
cone in TV !�n	� We denote this cone by C�

V !�n	 � TV !�n	� and by
C��!�n		 the union of these cones over !�n	� which becomes a �ber
bundle when restricted to each stratum "k�R

n	� We denote this cone
bundle by C��"k�R

n		 � "k�R
n	� The following lemma enables us to

prove Theorem �����

Lemma ����� The bundle C��"k�R
n		 � !�n	 has a canonical

section de�ned by

s�V 	 �
d

d�

���
�
�

ei� � V�

where we consider � �� ei�V as a curve in !�n	�

Proof � This is obvious because the curve is generated by the
Hamiltonian H � �

��
Pn

i
� jzij
�	� q�e�d�

Recall that the tangent space of !�n	 at any point V can be canoni�
cally identi�ed with the quadratic forms on V � We denote this quadratic
form Q�bV � V 	 for each bV � TV !�n	� Then the following lemma can
be easily proven from the de�nition of "k�R

n	 and the positive vectors
�see 
� for a proof�	

Lemma ����� At V � "k�R
n	� the form Q�s�V 	 � V 	 is positive

de�nite on V � Rn �

Now we are ready to prove Theorem �����

Proof of Theorem ���� We �rst choose a compact set K �
"k�R

n	 that is a deformation retract of "k�R
n	� Such a compact subset

exists because "k�R
n	 has a �bering over Grk�R

n	 with the �ber !��n�
k	 	� Sym�Rn�k 	� Note that Sym�Rn�k 	 is contractible� Denote this
deformation by Ft � "k�R

n	 � "k�R
n	� Now considering s � "k�R

n	 �
C��"k�R

n		 � T!�n	j�k�Rn� as a vector �eld along "k�R
n	 in !�n	� we

can de�ne a smooth deformation of K in !�n	 G � K � 
�� � � !�n	 so
that for all V � K

G�V� �	 � j�V 	 and
	G

	t

���
t
�

� s�V 	�
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By Lemma ���� and the compactness of K� there exists some � 
 � such
that

G�V� t	 � "��R
n	

for all V � K and � � s � �� Recall "��R
n	 is contractible� and

denote a homotopy to a point V� by H � "��R
n	 � 
�� � � !�n	 with

H��� �	 � id and H��� �	 � V� � !�n	 where V� is a �xed element
in !�n	� Now we compose these homotopies to obtain a homotopy
L � "k�R

n	� 
�� � � �� !�n	 by

L�V� t	 �

�����
j  F �V� t	 for � � t � ��

G�F �V� �	� t � �	 for � � t � � � ��

H�G  F��V 	� t� �� � �		 for � � � � t � � � ��

which is a homotopy from j � "k�R
n	 �� !�n	 to the constant map V��

This �nishes the proof� q�e�d�

�� General construction of symplectic invariants

#From now on to the end of this paper� we will �x the canonical
coherent orientation � � Or�
S � M	 so that HF �

� �H�S� J � M	 is
canonically isomorphic to the singular homology H��S�Z	� With this�
we will also suppress � from the notation HF �

� �H�S� J � M	�
In this section� we give the general construction of certain symplectic

invariants based on the machinery developed in Part I� With regard to
the critical point theory� this general construction should be regarded
as a direct approach for using the Floer theory to detect the linking
properties of the mini�maxing sets� we will use this construction below
to select the corresponding critical values� We will be interested in the
most primitive form of the invariants in this paper and postpone the
construction and applications of more re�ned invariants in the future
works�

We �rst note that the equation

����	

�����
�u
�� � J��u�t �XH�u		 � ��

u��� �	 � oM �

u��� �	 � N�S

is the negative gradient �ow of AH j��S� with respect to the metric
hh � iiJ on ��S	 and so preserves the downward �ltration given by
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the values of the action functional AH � In other words� the map

� �� AH�u��		

is monotonically decreasing for any solution u of ����	� This fact is
analytically encoded in the identity

����	
d

d�
AH�u��		 � �

Z
j
	u

	t
�XH�u	j�Jdt�

Let S � M be a given compact submanifold and let �H�J	 � Nreg�S	
be de�ned as in ����	� For a � R� we de�ne�

CF a�H�S � M	 � fz � CritAH j��S� j AH�z	 � ag

� fz � 
�� � � T �M j z��	 � oM � z��	 � N�S� �z � XH�z	

and AH�z	 � a g�

CF a
� � the Z�free module generated by them� and

CF
�a�b�
� � CF b

��CF
a
� �

Then the boundary map� de�ned in ����	�

	�H�J� � CF��H�S � M	� CF��H�S � M	

induces the �relative	 boundary map

	�H�J� � 	
�a�b�
�H�J� � CF

�a�b�
� �H�S � M	� CF

�a�b�
� �H�S � M	

for any b 
 a� which will obviously satisfy

	
�a�b�
�H�J�  	

�a�b�
�H�J� � ��

Hence� we can de�ne the relative homology groups by

����	 HF
�a�b�
� �H�S� J � M	 �� Ker 	

�a�b�
�H�J�� Im 	

�a�b�
�H�J��

#From the de�nition� there is a natural homomorphism

j� � HF
�a�b�
� � HF

�c�d�
�

when a � c and b � d� In particular� there exists a natural homomor�
phism

����	 j�� � HF
������
� � HF� � HF

������
� �
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De�nition ���� Let S � M be a compact submanifold� and let
�H�J	 � Nreg�S	� We de�ne the real number ��H�S� J	 by

��H�S� J	 �� inf
�
f� � R j j�� � HF

������
� �H�S� J � M	

� HF��H�S� J � M	� is surjectiveg

Lemma ���� For �H�S� J	 as in De�nition ��� ��H�S� J	 is a �nite
number which becomes a critical value AH j��S��

Proof� Since N�S t ��H�oM 	� there are only �nite many solutions
of �

�z � XH�z	�

z��	 � oM � z��	 � N�S�

i�e�� there are �nitely many critical points and so �nitely many critical
values of AH j��S�� We recall from Theorem ��� that

����	 HF��H�S� J � M	 	� H��S�Z	 �� f�g�

Furthermore since there are only �nitely many critical values and in
particular the set of critical values is bounded� we have

����	 HF
������
� �H�S� J � M	 � f�g

for su�ciently negative �� Combining ����	 and ����	� we immediately
derive

��H�S� J	 
 ��

from the de�nition� Again from the boundedness of the critical values�
the inclusion homomorphism

j�� � HF
������
� �H�S� J � M	� HF��H�S� J � M	

becomes an isomorphism if � � K for su�ciently large K � R� This
proves

��H�S� J	 ���

Finally the fact that the �nite value ��H�S� J	 is a critical value easily
follows from the fact that for �� 
 ��� the natural map

j� � HF
�������
� �H�S� J � M	� HF

�������
� �H�S� J � M	



relative floer theory ���

is an isomorphism as long as there are no critical values of AH j��S� with

�� � AH�z	 � ���

This �nishes the proof of Lemma� q�e�d�

Next� we study the J�dependence of ��H�S� J	 for �xed S and
H � HS when J varies among J�S�H��

Lemma ���� Let J�� J� � J�S�H�� Then we have

��H�S� J�	 � ��H�S� J�	�

Proof � Using the fact that J c is contractible and in particular con�
nected� we can choose a path J � fJsg��s�� in J c connecting J� and
J� so that the solution set of

����	

�
�u
�� � J�K���

�
�u
�t �XH�u	

	
� ��

u��� �	 � oM � u��� �	 � N�S

satis�es the regular property required before� provided K 
 � is su��
ciently large� Recall that the canonical homomorphism

h�� � CF��H�S� J
�	� CF��H�S� J

�	

is de�ned by

h���z
�	 �

X
n���z�� z�	z� �

where n���z�� z�	 � ��MK�z�� z�		 that induces an isomorphism

HF��H�S� J
� � M	� HF��H�S� J

� � M	�

To see how ��H�S� J	 vary under the change of J � we need to estimate
the di�erence

AH�z�	�AH�z�	

whenever n���z�� z�	 �� � and so in particular when there exists a solu�
tion u of ����� with

lim
����

u��	 � z�� lim
���

u��	 � z� �

For such u� we then write

����	 AH�z�	�AH�z�	 �

Z �

��

d

d�
AH�u��		d��
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However� we have

d

d�
AH�u��		 � dAH�u��		 �

du

d�

�

Z �

�

�
��
	u

	t
�
	u

	�
	� dHt�u	

	u

	�

�
from �����	

�

Z �

�
hJ�����

	u

	t
�XH�u		�

	u

	�
i
J
����
t

� �

Z �

�
j
	u

	t
�XH�u	j�

J
����
t

from the equation ����	

� ��

Note that the boundary term from �����	 drops out due to the �xed
boundary condition required in ����	� Hence� we have proved that when�
ever there exists a solution u as above� we have

AH�z�	 � AH�z�	�

This shows that the map h�� � CF��H�S� J
�	� CF��H�S� J

�	 restricts
to a map

h�� � CF
������
� �H�S� J�	� CF

������
� �H�S� J�	

for any � � R and so induces a homomorphism

h�� � HF
������
� �H�S� J� � M	� HF

������
� �H�S� J� � M	�

Now consider the commutative diagram

HF
������
� �H�S� J� � M	

�j�� ��� HF��H�S� J
� � M	

� h�� � h��

HF
������
� �H�S� J� � M	 �

�j�� ��
HF��H�S� J

� � M	�

Since h�� on the right�hand side is an isomorphism� if �j�� 	� is surjective�
so is �j�� 	�� Therefore� from the de�nition we have proved

��H�S� J�	 � ��H�S� J�	�
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Changing the roles of � and � yields

��H�S� J�	 � ��H�S� J�	�

which �nishes the proof of ��H�S� J�	 � ��H�S� J�	 q�e�d�

Lemma ��� now allows us to de�ne the invariant ��H�S� J	 for any
J � J c by simply extending the de�nition to all J c by continuity�

De�nition ��� Let S � M be a compact manifold and H � HS �
We de�ne

��H�S	 �� ��H�S� J	

for a J � J �S�H	 �and so for any J � J 	�

Next� we study the dependence of ��H�S	 on �H�S	� Since our
primary interest is the study of a given Lagrangian submanifold ��H�oM 	�
we will �x H � H and vary S �rst�

Proposition ���� Let S� � M and let Iso �S� � M	 be the isotopy
class of S� in M � Then the assignment

S� �� ��S��H	

on S� � IsoH�S� � M	 is continuous on S� in the C��topology of
Iso �S� � M	� Hence we can extend the de�nition of ��S�H	 to all
S � Iso �S� � M	 by continuity in C��topology of Iso �S� � M	�

Proof � The idea of the proof of this proposition is similar to that
of Lemma ���� Similar arguments will appear again and again in this
paper� Let S� and S� � IsoH�S� � M	 and let Ss be a generic isotopy
between them� It will be enough to consider the case where S� and S�

are su�ciently C��close so that the map � � S� � S� de�ned by the
nearest point becomes a di�eomorphism� We now consider the equation
for J � H�H�S�� �H�H�S��

����	

�����
�u
�� � J��u�t �XH�u		 � ��

u��� �	 � oM � u��� �	 � N�S�K����

lim���� u��	 � z�� lim��� u��	 � z�

for each z� �MJ �H�S
�	 and z� �MJ�H�S

�	� As before� we estimate

AH�z�	�AH�z�	
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for the pair �z�� z�	 with n���z�� z�	 �� � �and so ����	 has a solution	�
This time from �����	 we have

d

d�
AH�u��		 � dAH�u��		 �

du

d�

� �

Z �

�
j
	u

	t
�XH�u	j�Jtdt� hT�

	u

	�
��� �	� u��� �	i

� h
	

	�
��  u	��� �	� u��� �	i�

Recall that u��� �	 � N�S�K��� and so � u��� �	 � S����� Therefore� the
component � �

�� ��  u	��� �		
� to S���� has the inequality

�����	
���� 	
	�

��  u	��� �		�
��� � ����	

���	Ss
	s

����
Furthermore� by the C��estimate ����	� we also have

�����	 ju��� �	jg � C�

where ju��� �	jg is the norm as an element in T ���u������M � Combining

�����	 and �����	� and integrating
R�
��

d
d�AH�u��		d� � we get

AH�z�	�AH�z�	 � C

Z �

��
��K��	

���	Ss
	s

���d�
� C max

s������

���	Ss
	s

��� Z �

��
��K��	d�

� C max
s������

���	Ss
	s

����
Obviously� one can choose the path fSsg��s�� so that

max
s������

��	Ss
	s

�� 	 dC��S�� S�	�

and hence�

AH�z�	�AH�z�	 � CdC��S�� S�	 �� ��� �

when S� and S� are C��close� As before� the natural homomorphism
h�� � HF��H�S

�� J � M	 � HF��H�S
� � J � M	 induces the commuta�
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tive diagram�

HF
������
� �H�S�� J � M	

j���� HF��H�S
�� J � M	

� h�� � h��

HF
���������
� �H�S� � J � M	 ��

j���
��

�

HF��H�S
� � J � M	

Again since h�� on the right�hand side is an isomorphism� we conclude

��S��H	 � ��S��H	 � CdC��S�� S�	�

By changing the roles of � and �� we prove the other side of the in�
equality and so

j��S� �H	� ��S��H	j � CdC��S�� S�	�

which in particular proves the continuity of ����H	� q�e�d�

Remark ���� We would like to emphasize that in the proof of
Proposition ���� we have used the a priori C��estimate ����	 in an es�
sential way�

In the next section� we will study the most important property of
��H�S	� the dependence of ��H�S	 on H�

�� Basic properties of the invariants ��H�S	

In this section� we �x S �M and start with considering H�s in HS �
We �rst prove the following easy lemma�

Lemma ���� When H � HS and kHkC� � �� then ��H�S	� ��

Proof � Let z be any solution of�
�z � XH�z	�

z��	 � oM � z��	 � N�S�

Then

AH�z	 �

Z
z�� �

Z �

�
H�z�t	� t	dt

�

Z �

�
hT�� �z	� zi �

Z �

�
H�z�t	� t	dt
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and hence

jAH�z	j �

Z �

�
jT�� �z	jjzj �

Z �

�
max
x
jHjdt�

By the equation �z � XH�z	 it is immediately seen that

����	 jAH�z	j � C

Z �

�
max
x

�jdHj� � jHj	dt

for all solutions z� Using the fact that ��H�S	 is a critical value and so
��H�S	 � AH�z	 for some solution z of the equation� the lemma follows
from ����	� q�e�d�

The following theorem summarizes the basic properties of ��H�S	�

Theorem ���� Let S �M be a compact manifold and assume that
H�H��H� � HS� Then� ��	 We haveZ �

�
�max

x
�H� �H�	dt ���H�� S	� ��H�� S	

�

Z �

�
�min

x
�H� �H�	dt�

����	

which particularly together with Lemma �� leads to

����	

Z �

�
�max

x
Hdt � ��H�S	 �

Z �

�
�min

x
Hdt�

��	 From �� we obtain

j��H� � S	� ��H�� S	j � kH� �H�kC� �

which in particular implies that for �xed S� one can extend the assign�
ment H �� ��H�S	 to all H as a continuous function in the C��topology
of H� We will continue to denote the extension by ��H�S	�

Remark ���� By combining Proposition ��� and Theorem ��� ��	
we can now extend the de�nition of ��H�S	 to the set

HC� � IsoC��S� � M	�

where

HC� � the set of asymptotically constant C��functions on T �M � 
�� ��
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IsoC��S� � M	 � the set of C��embeddings which are isotopic to S��

In fact� one can see that we can even extend the de�nition to

HC� � IsoLip �S� � M	�

It would be interesting to study the geometric meaning of ��H�S	 for
the cases where H � C� but not in C��

Proof� The proof of ��	 immediately follows from ����	 and so we
need only to prove ��	� Consider the linear homotopy

Hs �� ��� s	H� � sH��

Although this homotopy may not be regular in the sense of Theorem ���
��	� we will pretend it is so for the moment and explain the necessary
justi�cation in the end� Consider the equation

����	

�����������������

�u
�� � J��u�t �X

H
����
K

�u		 � ��

u��� �	 � oM � u��� �	 � N�S�

lim���� u��	 � z�� lim��� u��	 � z� �

For the notational convenience� we just denote � � �K below� As before�
for the pair �z�� z�	 with n���z

�� z�	 �� � we compute

AH� �z�	�AH��z�	 �

Z �

��

d

d�

�
AH�����u��		

�
d��

and

d

d�
�AH�����u��			 � dAH�����u��		�

du

d�
	�

Z �

�
��H

����

�� 	�u� t	dt�

Here as before�

dAH�����u��		�
du

d�
	 � �

Z �

�
j
	u

	t
�XH�����u	j�Jdt � ��

Z �

�
��H

����

�� 	�u� t	dt � �

Z �

�
����	�H� �H�	�u� t	dt

� �����	

Z �

�
min
x

�H� �H�	dt�

����	
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and hence�

AH��z�	�AH��z�	 �

Z �

��
�����	

Z �

�
min
x

�H� �H�	dtd�

�

Z �

�
�min

x
�H� �H�	dt

Z ��

�
����	d�

�

Z �

�
�min

x
�H� �H�	dt�

By the similar arguments as before this estimate implies

��H� � S	 � ��H�� S	 �

Z �

�
�min

x
�H� �H�	dt�

i�e��

����	 ��H�� S	� ��H�� S	 �

Z �

�
�min

x
�H� �H�	dt

by considering the homomorphism

h�� � HF
������
� �H�� S� J � M	� HF

���������
� �H�� S� J � M	�

where ��� � �
R �
� minx�H

��H�	dt� Changing the roles of � and � also
leads to

��H�� S	 � ��H� � S	 �

Z �

�
�min

x
�H� �H�	dt�

i�e��

��H� � S	� ��H�� S	 �

Z �

�
min
x

�H� �H�	dt

�

Z �

�
�max

x
�H� �H�	dt�

����	

where we have used the identity

�max
x

f�x	 � min
x

��f�x		�

Combining ����	 and ����	� we will have �nished the proof if we can
justify the use of the linear homotopy which might not be regular� To
do this� we proceed as follows� For each given � 
 �� we approximate
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the above linear homotopy by C��close regular homotopies H so that
for all t � 
�� �

����	 max
x�s

���H
�s �x� t� s	� �H� �H�	�x� t	

�� � ��

Then for this homotopy� ����	 will be replaced by

�

Z
�
�
	H����

	�
	�u� t	dt � �

Z �

�
����	

	H

	s
�u� t� ���		dt

� ����	

Z �

�
�min

x�s

	H

	s
�s� t� s	dt

� ����	�

Z �

�
�min

x�s
�H� �H�	 � �	dt�

which implies

AH��z�	�AH��z�	 �

�Z �

�
�min

x
�H� �H�	 � �

�
dt�

By letting �� �� we are done for ����	� To prove ����	� we set H� � H
and H� � � in C��topology and apply Lemma ��� and ����	� This
�nishes the proof� q�e�d�

�� Symplectic invariants of Lagrangian submanifolds

In the previous section� we have de�ned ��H�S	 for each pair �H�S	�
It turns out that ��H�S	 depends only on the Lagrangian submanifold
L � �H�oM 	 up to a universal normalization independent of S �M �

To explain the normalization� we recall that the wave front set of
exact Lagrangian submanifold L �e�g�� L � �H�oM 		 is uniquely de�ned
up to the vertical translation on M �R� We now recall Proposition ����
When H �� L is given� we select the wave front of L as

WH � f�q� r	 j q � ��p	� r � AH�zpH	� p � Lg�

Then Proposition ��� ��	 implies �if we assume L is connected	

WK � WH � c �
�r

for some c � R� provided H�K �� L� i�e�� �H�oM 	 � �K�oM 	 � L� And
Proposition ��� ��	 implies that

WH�c� � WH � c�
�
�r
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for any constant c� � R� The following theorem shows that ��H�S	 is
the invariant of L � �H�oM 	 up to the normalization�

Theorem ���� Suppose that H�K �� L and that WH � WK� Then
��K�S	 � ��H�S	 for all S �M �

Proof � We will use a transformation between the geometric and
the dynamical versions of the Floer theory in an essential way� To prove
the theorem� we have to show that for H�K as in the theorem�

����	 ��H�S� J	 � ��K�S� J	

for any S � IsoH � IsoK and J � JH�S � JK�S� and then the theorem
will follow by the continuity property of � for all S and J �

We �rst explain some simple but crucial transformation between
two versions of the Floer theory� one the geometric version used by
Floer 
�� and the present author 
�� previously� and the other the
dynamical version that is being used in the present paper� In the present
paper� we have de�ned HF��H�S� J � M	 by considering the solutions
of Hamilton�s equation

����	

�
�z � XH�z	�

z��	 � oM � z��	 � N�S�

and the perturbed Cauchy�Riemann equation

����	

�����
�u
�� � J��u�t �XH�u		 � ��

u��� �	 � oM �

u��� �	 � N�S

for the path u � R � ��S	� i�e�� a map

u � R � 
�� � � T �M�

On the other hand� one can de�ne an equivalent object for a suitably
chosen eJ which we denote by HF���H�oM 	� N�S� eJ	 considering the
intersections �H�oM 	 �N�S and the Cauchy�Riemann equation

����	

�����
�u
�� � eJ �u

�t � ��

u��� �	 � �H�oM 	�

u��� �	 � N�S
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for the path u � R � ��L�N�S	 where L � �H�oM 	 and

��L�N�S	 � f� � 
�� � � T �M j ���	 � L� ���	 � N�Sg�

The important feature of both equations is that they are the gradient
�ow of AH j��S� and the Floer�s functional aS de�ned as in �����	 respec�
tively� An advantage of the geometric version is that it depends only on
the Lagrangian submanifold L � �H�oM 	 not on H� but as mentioned
in Proposition ���� one can assume that under a suitable normalization
of aS as in Proposition ���

����	 AH�zpH	 � aS�p	

for all p � �H�oM 	 �N�S� We denote by aSH this normalized aS � The
following is an easy but crucial lemma that we shall use�

Lemma ���� ��	 The map �H � ��S	� ��L�N�S	 de�ned by

� �� ��H��tH	���

gives rise to the one�one correspondence between the set �H�oM 	 �
N�S � ��L�N�S	 as constant paths and the set of solutions of ���
��

��	 The map u �� �H�u	 also de�nes a one�one correspondence
from the set of solutions of ����� and that of

����	

�����
�eu
�� � JH �eu

�t � ��eu��� �	 � �H�oM 	�eu��� �	 � N�S�

where JH � fJHt g� J
H
t �� ���H��tH	��	�Jt� Furthermore� ����	 is regular

if and only if ����	 is regular�

We will omit the proof by referring to 
��� Appendix for the proof
of a similar statement� One immediate corollary of this lemma is

Corollary ���� For the regular H�S and J � the isomorphism

��H	� � HF��H�S� J � M	� HF��L�N
�S� JH	

preserves �ltrations� i�e�� restricts to the isomorphism

��H	� � HF
������
� �H�S� J � M	� HF

������
� �L�N�S� JH	�

where the �ltration on the left�hand side is given by AH and that on the
right is given by aSH �
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In the same way as we de�ned ��H�S� J	� we can de�ne� for the
regular eJ �in the sense that all the solutions of ����	 are regular	�

e��L� S� eJ	 � inf
�



� j ej�� �HF

������
� �L�N�S� eJ	

� HF��L�N
�S� eJ	 is surjective ��

Furthermore one can also prove in the same way as in the proof of
Lemma ��� that for a �xed normalization of aS

����	 e��L� S� eJ�	 � e��L� S� eJ�	
for regular eJ� and eJ� � Now� we go back to the proof of ����	� Corollary
��� implies that under the normalization of aS in ����	� we have

����	 ��H�S� J	 � e��L� S� JH	�

Similarly one can normalize aS so that

����	 ��K�S� J	 � e��L� S� JK	�

and denote by aSK the corresponding function� Now� we have only to
show that the two normalizations used for H and K agree and then
����	 applied to JH and JK will �nish the proof� To prove aSH 
 aSK � it
is enough to prove

�����	 aSH�p	 � aSK�p	

for some p � �H�oM 	�N�S � ��L�N�S	� However from ����	 we have

AH�zpH	 � aSH�p	�

AK�zpK	 � aSK�p	

for all p � L � N�S� We just pick any point among them� Now the
hypothesis WH �WK implies that

AH�zpH	 � AK�zpK	�

Combining these� we have aSH�p	 � aSK�p	 and so aSH 
 aSK � This �nishes
the proof of ����	 and so the proof of Theorem ���� q�e�d�

Remark ��� One might attempt to prove ����	 by the more fa�
miliar continuity argument of �nding a path fHsg from H to K and of
using Proposition ���� the fact that Spec�H�S	 is nowhere dense subset
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of R� To apply this argument� we have to make the sets Spec�Hs� S	
�xed for all s� However besides the normalization problem which can
be solved easily as before� this approach faces a di�cult problem of the
connectivity question� Whether the set of Hamiltonians H generating a
�xed Lagrangian submanifold L is connected or not� This is exactly the
reason why we bypassed this di�cult question using the above transfor�
mation between the geometric and the dynamical versions of the Floer
theory� One might consider this transformation the analogoue to the
gauge invariance of the generating function approach�

Now� Theorem ��� allows us to de�ne various kinds of homotopy
theoretical invariants of the Lagrangian submanifold L � �H�oM 	� We
call these invariants capacities of L relative to S �M �

De�nition ���� Let S� � M be a compact submanifold and
Iso �S� � M	 be the isotopy class of embeddings of S�� We denote
by 
S� the corresponding isotopy class on M � For a given L � �H�oM 	�
we de�ne

�����	 ��L � S�	 �� max
S��S��

��H�S	� min
S��S��

��H�S	

for any H �� L� and call it the capacity of L relative to the class 
S��

Note that the right�hand side of �����	 is independent of the choice
of H as long as H �� L�

�� Wave front and normalizations

The special case S � fptg is particularly interesting in that it is
closely related to the structure of the wave front of the Lagrangian
submanifoldL � �H�oM 	� In this case� for each givenH� the assignment

q �� ��H� fqg	 on M

de�nes a continuous function on M � which is a consequence of Proposi�
tion ���� We denote this function by fH � M � R� i�e��

fH�q	 � ��H� fqg	

and call it the basic phase function of H or of L � �H�oM 	� The
assignment

H �� fH � H � C��M	
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de�nes a continuous map with respect to the C��topology of H and fH �
Furthermore� it has the property

����	 ��L � fptg	 � oscfH � kHk�

where kHk is the Hofer�s norm� By taking the in�mum infH ��L kHk in
����	� we have derived the inequality

����	 ��L � fptg	 � d�oM � L	�

Theorem ���� Let GfH be the graph of fH� Then GfH �M �R is
a subset of the wave front of L� and so fH is smooth away from a set of
codimension at least one� and at smooth points q we have

�q� dfH�q		 � �H�oM 	 � L�

Proof � The �rst statement follows from the de�nition of fH �
��H� fqg	 and the fact that fH�q	 is a critical value of AH j��fqg� and so

fH�q	 � AH�zpH	 for some p � �H�oM 	 � T �qM�

The second statement follows from the general property on the wave
front set �See 
�� for example	 because the only possible non�smooth
points are those corresponding to the crossings of two di�erent branches
of the wave front set of L� q�e�d�

Remark ���� In the terminology of 
��� the graph GfH selects a
semi�simple part �or a graph part	 in a canonical way� We suspect that
this canonical choice will be useful in the study of structure of the wave
front in low dimensions� which should involve �ner understanding of the
Floer cycles�

Theorem ��� gives rise to an easy proof of the nondegeneracy of the
Hofer�s distance de�ned in �����	�

Theorem ���� The distance de�ned in �
��� is nondegenerate�
i�e�� d�L�� L�	 � � if and only if L� � L��

Proof� We �rst consider the case where L� � oM � In this case� we
have by de�nition

d�oM � L�	 � inf
H ��L�

kHk�
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Now� suppose that d�oM � L�	 � �� Then ����	 yields

��L� � fptg	 � ��

i�e�� the basic phase function fH is a constant function on M � and so fH
is smooth everywhere and

dfH�q	 � �

for all q �M � Therefore� we have proved

����	 oM � L� � �H�oM 	�

Using the compactness and connectedness of M � it is easy to show that
����	 indeed implies

oM � L��

which �nishes the proof for the case where L� � oM � For the general
cases of

L� � ��oM 	 and L� � �oM 	�

we �rst note that

d�L�� L�	 � d���L�	� ��L�		

for any � � D��T
�M	� Therefore one can reduce the general case to the

special case L� � oM � q�e�d�

To illustrate the meaning of the fH � we give an example for the case
where M � S��

Example ��� Let us consider the Lagrangian submanifold L �
T �S pictured as in the following �gure� Here we denote by z�s the
intersections of L with the zero section� by x�s the caustics and by y
the point at which the two shaded regions in the picture have the same
area� The corresponding wave front can be easily drawn as
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Figure �

Figure �

Note that the points z�s correspond to critical points of the action
functional� x�s to the cusp points of the wave front and y to the point
where two di�erent branches of the wave front cross� Using the conti�
nuity of the basic phase function fH where H �� L� one can easily see
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that the graph of fH is the one bold�lined in Figure �� We would like
to note that the value minq�M FH�q	 is not a critical value of AH �

Now� we are ready to provide a universal normalization which is
continuous with respect to the Hamiltonian H� This will take care of
the indeterminacy in de�ning the invariants of Lagrangian submanifolds
L � �H�oM 	� We have de�ned the basic phase function fH � M � K
by fH�q	 � ��H� fqg	� and from the very beginning we have �xed a
Riemannian metric g on M and so have the induced measure on M �
We de�ne the constant

����	 b�H	 ��
�

vol�M	

Z
fHdvol�

The following is easy to prove

Lemma ���� For each H�K �� L� we have

c�H�K	 � b�H	� b�K	�

where c�H�K	 is the constant in �
�
���

Therefore combining Proposition ���� Theorem ��� and Lemma ����
we now de�ne the normalized version of ��H�S	 by

e��H�S	 � ��H�S	� b�H	�

which now depends only on the �nal Lagrangian submanifold L �
�M �oM 	� and obviously share all the properties similar to Theorem ����
We denote the common number by ��L� S	 � e��H�S	�

De�nition ���� For each S �M � we de�ne

��L� S	 � e��H�S	
for a H �� L �and so for any H	�

Theorem ���� Let S � M be a compact submanifold� Then �
is a continuous function with respect to the Hofer�s distance of L and
C��topology of S�

Remark ���� One could also take

b�H	 � min
x�M

fH�x	 or max
x�M

fH�x	

or any distinguished value of fH � if there is� We would like to note that
for Viterbo�s invariant� there is no obvious continuous universal nor�
malization� In fact� many statements in 
�� should be restricted to the
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case where the Lagrangian submanifolds coincide with the zero section
in some neighborhoods of a �xed point in terms of the normalization
problem� In that case� by assuming that H 
 � on the neighborhood�
there is the canonical normalization which gives rise to zero as a distin�
guished value of fH �
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